

Automation1 XC6e High-Powered PWM Digital Drive

HARDWARE MANUAL

Revision 1.00

GLOBAL TECHNICAL SUPPORT

Go to the Global Technical Support Portal for information and support about your Aerotech, Inc. products. The website supplies software, product manuals, Help files, training schedules, and PC-to-PC remote technical support. If necessary, you can complete Product Return (RMA) forms and get information about repairs and spare or replacement parts. To get help immediately, contact a service office or your sales representative. Include your customer order number in your email or have it available before you call.

This manual contains proprietary information and may not be reproduced, disclosed, or used in whole or in part without the express written permission of Aerotech, Inc. Product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

Copyright © 2021, Aerotech, Inc., All rights reserved.

Table of Contents

Automation1 XC6e High-Powered PWM Digital Drive	
Table of Contents	
List of Figures	
List of Tables	
EU Declaration of Conformity	
Safety Procedures and Warnings	
Installation Overview	
Chapter 1: Introduction	16
1.1. Electrical Specifications	
1.1.1. System Power Requirements	
1.2. Mechanical Specifications	2
1.2.1. Mounting and Cooling	2
1.2.2. Dimensions	
1.3. Environmental Specifications	24
1.4. Drive and Software Compatibility	25
Chapter 2: Installation and Configuration	27
2.1. Input Power Connections	28
2.1.1. Control Supply Connector	28
2.1.2. Motor Supply Connector	
2.1.3. Minimizing Noise for EMC/CE Compliance	30
2.2. Motor Power Output Connector	31
2.2.1. Brushless Motor Connections	32
2.2.1.1. Brushless Motor Powered Motor and Feedback Phasing	
2.2.1.2. Brushless Motor Unpowered Motor and Feedback Phasing	3/
2.3. Feedback Connector	3 ¹
2.3.1. Primary Encoder Inputs	36
2.3.1.1. Square Wave Encoder	37
2.3.1.2. Absolute Encoder	
2.3.1.3. Sine Wave Encoder [-MX2/-MX3 Option]	
2.3.1.4. Encoder Phasing	Δ1
2.3.2. Hall-Effect Inputs	
2.3.3. Thermistor Input	
2.3.4. Encoder Fault Input	
2.3.5. End of Travel and Home Limit Inputs	Δ ¹
2.3.5.1. End of Travel and Home Limit Phasing	
2.3.6. Brake Outputs	
2.4. Safe Torque Off Input (STO)	
2.4.1. STO Standards	
2.4.2. STO Functional Description	
2.4.3. STO Startup Validation Testing	53
2.4.4. STO Diagnostics	52
2.5. Auxiliary I/O Connector	
2.5.1. Auxiliary Encoder Inputs	5c
2.5.1.1. Square Wave Encoder	57
2.5.1.2. Absolute Encoder	 ۶۶
2.5.1.3. Sine Wave Encoder [-MX3 Option]	
2.5.2. Position Synchronized Output (PSO)	
2.5.3. Digital Outputs	
2.5.4. Digital Inputs	
2.5.5. High-Speed Inputs	
2.5.6. Analog Output 0	
2.5.7. Analog Input 0 (Differential)	
2.6. Brake Power Supply Connector	
2.7. HyperWire Interface	
2.8. Shunt Options	
2.9. Sync Port	77
2.10. System Interconnection	
2.10. System interconnection	/ (

2.11. PC Configuration and Operation Information	77
Chapter 3: -EB1 I/O Option Board	79
3.1. Digital Outputs [-EB1]	80
3.2. Digital Inputs [-EB1]	
3.3. Analog Outputs [-EB1]	87
3.4. Analog Inputs [-EB1]	88
Chapter 4: Cables and Accessories	91
4.1. Joystick Interface	92
4.2. Handwheel Interface	94
Chapter 5: Maintenance	95
5.1. Preventative Maintenance	
5.2. Fuse Specifications	
Appendix A: Warranty and Field Service	99
Appendix B: Revision History	101
Index	103

List of Figures

Figure 1-1:	XC6e High Power Networked Digital Drive	15
Figure 1-2:	Functional Diagram	
Figure 1-3:	Dimensions	22
Figure 1-4:	Dimensions [-EB1]	23
Figure 2-1:	Control Supply Connections	28
Figure 2-2:	Motor Supply Connections	29
Figure 2-3:	Brushless Motor Configuration	
Figure 2-4:	Positive Motor Direction	
Figure 2-5:	Encoder and Hall Signal Diagnostics	33
Figure 2-6:	Brushless Motor Phasing Oscilloscope Example	34
Figure 2-7:	Brushless Motor Phasing Goal	34
Figure 2-8:	Square Wave Encoder Schematic (Feedback Connector)	37
Figure 2-9:	Absolute Encoder Schematic (Feedback Connector)	
Figure 2-10:		
Figure 2-11:	Sine Wave Encoder Schematic (Feedback Connector)	
Figure 2-12:	Encoder Phasing Reference Diagram (Standard)	
Figure 2-13:	Position Feedback in the Diagnostic Display	
Figure 2-14:	Hall-Effect Inputs Schematic (Feedback Connector)	
Figure 2-15:	Thermistor Input Schematic (Feedback Connector)	
Figure 2-16:	Encoder Fault Input Schematic (Feedback Connector)	
Figure 2-17:	End of Travel and Home Limit Input Connections	
Figure 2-18:	End of Travel and Home Limit Input Schematic (Feedback Connector)	
Figure 2-19:	·	
Figure 2-20:	Brake Connected to the 25-Pin Feedback Connector (Typical)	
Figure 2-21:	Typical Configuration	
Figure 2-22:	STO Timing	
Figure 2-23:	_	
Figure 2-24:	Absolute Encoder Schematic (Auxiliary I/O Connector)	
Figure 2-25:		
Figure 2-26:		
Figure 2-27:	•	
Figure 2-28:	Digital Output Schematic (Aux I/O Connector)	
Figure 2-29:		
Figure 2-30:		
Figure 2-30:	5 1	
Figure 2-31:	Digital Inputs Connected to Current Surking Devices Digital Inputs Connected to Current Sourcing Devices	
Figure 2-32:		
Figure 2-33:	Analog Output 0 Schematic	
Figure 2-34:	Analog Input 0 Schematic	
Figure 2-35. Figure 2-36:	System Wiring Drawing (Best Practice)	
Figure 2-30. Figure 3-1:	XC6e with -EB1 I/O Option Board Connectors	
•	•	
Figure 3-2:	Digital Outputs Schematic [-EB1]	
Figure 3-3:	Digital Outputs Connected in Current Sourcing Mode [-EB1]	
Figure 3-4:	Digital Outputs Connected in Current Sinking Mode [-EB1]	
Figure 3-5:	Digital Inputs Schematic [-EB1]	
Figure 3-6:	Digital Inputs Connected to Current Sourcing (PNP) Devices [-EB1]	
Figure 3-7:	Digital Inputs Connected to Current Sinking (NPN) Devices [-EB1]	
Figure 3-8:	Analog Output Typical Connection [-EB1]	8/

Figure 3-9:	Analog Input Typical Connection [-EB1]	.88
Figure 3-10:	PSO Output Sources Current	90
Figure 3-11:	PSO Output Sinks Current	90
Figure 3-12:	PSO TTL Outputs Schematic	90
Figure 4-1:	Two Axis Joystick Interface (to the Aux I/O of two drives)	92
Figure 4-2:	Two Axis Joystick Interface (to the I/O board)	. 93
Figure 4-3:	Handwheel Interconnection to Aux I/O Connector	.94
Figure 4-4:	Handwheel Interconnection to the Aux I/O through a BBA32 Module	. 94

List of Tables

Table 1-1:	Feature Summary	16
Table 1-2:	Electrical Specifications	18
Table 1-3:	Electrical Specifications (continued)	19
Table 1-4:	Mounting Specifications	21
Table 1-5:	Environmental Specifications	24
Table 1-6:	Drive and Software Compatibility	25
Table 2-1:	Control Supply Wiring Specifications	28
Table 2-2:	Mating Connector Part Numbers for the Control Supply Connector	28
Table 2-3:	Motor Supply Connector Wiring Specifications	29
Table 2-4:	Mating Connector Part Numbers for the Motor Supply Connector	29
Table 2-5:	Motor Supply Connector Fuse Specifications	29
Table 2-6:	Motor Power Output Connector Pinout	31
Table 2-7:	Mating Connector Part Numbers for the Motor Power Output Connector	31
Table 2-8:	Wire Colors for Aerotech-Supplied Brushless Motor Cables	32
Table 2-9:	Hall Signal Diagnostics	33
Table 2-10:	Feedback Connector Pinout	35
Table 2-11:	Mating Connector Part Numbers for the Feedback Connector	35
Table 2-12:	Multiplier Options	
Table 2-13:	Primary Encoder Input Pins on the Feedback Connector	36
Table 2-14:	Square Wave Encoder Specifications	37
Table 2-15:	Sine Wave Encoder Specifications	
Table 2-16:	Hall-Effect Feedback Pins on the Feedback Connector	
Table 2-17:	Thermistor Input Pin on the Feedback Connector	43
Table 2-18:	Encoder Fault Input Pin on the Feedback Connector	
Table 2-19:	End of Travel and Home Limit Pins on the Feedback Connector	
Table 2-20:	Brake Output Pins on the Feedback Connector	48
Table 2-21:	Brake Control Specifications	48
Table 2-22:	STO Connector Pinout	49
Table 2-23:	Mating Connector Part Numbers for the STO Connector	
Table 2-24:	STO Electrical Specifications	
Table 2-25:	STO Standards	
Table 2-26:	STO Standards Data	
Table 2-27:	STO Signal Delay	
Table 2-28:	Motor Function Relative to STO Input State	
Table 2-29:	STO Timing	
Table 2-30:	Auxiliary I/O Connector Pinout	
Table 2-31:	Mating Connector Part Numbers for the Auxiliary I/O Connector	
Table 2-32:	Auxiliary Encoder Pins on the Auxiliary I/O Connector	
Table 2-33:	· · · · · · · · · · · · · · · · · · ·	
Table 2-34:	Sine Wave Encoder Specifications	
Table 2-35:	PSO Specifications	
Table 2-36:	PSO Pins on the Auxiliary I/O Connector	
Table 2-37:	Digital Output Specifications	
Table 2-38:	Digital Output Pins on the Auxiliary I/O Connector	
Table 2-39:	Digital Input Specifications	
Table 2-40:	Digital Input Pins on the Auxiliary I/O Connector	
Table 2-41:	High-Speed Input Specifications	
Table 2-42:	High-Speed Input Pins on the Auxiliary I/O Connector	67

Table 2-43:	Analog Output Specifications	68
Table 2-44:	Analog Output Pins on the Auxiliary I/O Connector	68
Table 2-45:	Analog Input Specifications	69
Table 2-46:	Analog Input Pins on the Auxiliary I/O Connector	69
Table 2-47:	Brake Power Supply Connector Pinout	
Table 2-48:	Mating Connector Part Numbers for the Brake Power Supply Connector	70
Table 2-49:	HyperWire Card Part Number	71
Table 2-50:	HyperWire Cable Part Numbers	71
Table 2-51:	Bus Link Connector Pinout	72
Table 2-52:	Mating Connector Part Numbers for the Bus Link Connector	
Table 2-53:	Internal Shunt Specifications	72
Table 2-54:	Maximum Recommended Shunt Current	
Table 2-55:	Maximum Additional Storage Energy for a Standard XC6e	73
Table 2-56:	Sync-Related Functions	
Table 2-57:	Sync Port Cables	
Table 3-1:	Digital Output Specifications [-EB1]	
Table 3-2:	Digital Output 1 Connector Pinout [-EB1]	
Table 3-3:	Mating Connector Part Numbers for the Digital Output 1 Connector [-EB1]	81
Table 3-4:	Digital Output 2 Connector Pinout [-EB1]	
Table 3-5:	Mating Connector Part Numbers for the Digital Output 2 Connector [-EB1]	
Table 3-6:	Digital Input Specifications [-EB1]	
Table 3-7:	Digital Input 1 Connector Pinout [-EB1]	
Table 3-8:	Mating Connector Part Numbers for the Digital Input 1 Connector [-EB1]	
Table 3-9:	Digital Input 2 Connector Pinout [-EB1]	
Table 3-10:	Mating Connector Part Numbers for the Digital Input 2 Connector [-EB1]	
Table 3-11:	Analog Output Specifications [-EB1]	
Table 3-12:	Analog Output Connector Pinout [-EB1]	
Table 3-13:	Mating Connector Part Numbers for the Analog Output Connector [-EB1]	
Table 3-14:	Differential Analog Input Specifications [-EB1]	
Table 3-15:	Analog Input Connector Pinout [-EB1]	
Table 3-16:	Mating Connector Part Numbers for the Analog Input Connector [-EB1]	
Table 3-17:	PSO Specifications [-EB1]	
Table 3-18:	PSO Interface Connector Pinout [-EB1]	
Table 3-19:	Mating Connector Part Numbers for the PSO Interface Connector [-EB1]	
Table 4-1:	Standard Interconnection Cables	
Table 5-1:	LED Description	
Table 5-2:	Troubleshooting	
Table 5-3:	Preventative Maintenance	
Table 5-4:	Control Board Fuse Specifications	97

EU Declaration of Conformity

ManufacturerAerotech, Inc.Address101 Zeta Drive

Pittsburgh, PA 15238-2811

USA

Product XC6e **Model/Types** All

This is to certify that the aforementioned product is in accordance with the applicable requirements of the following Directive(s):

2014/30/EU Electromagnetic Compatibility (EMC)

2014/35/EU Low Voltage Directive 2006/42/EC Machinery Directive

EU 2015/863 Directive, Restricted Substances (RoHS 3)

and has been designed to be in conformity with the applicable requirements of the following Standard(s) when installed and used in accordance with the manufacturer's supplied installation instructions.

EN 61326-1:2013 EMC Requirements for Electrical Equipment
EN 61010-1:2010/A1:2019 Safety Requirements for Electrical Equipment
EN ISO 13849-1:2015 Safety Related Parts of Control Systems

Authorized Representative: Simon Smith, European Director

Address: Aerotech Ltd

The Old Brick Kiln, Ramsdell, Tadley

Hampshire RG26 5PR

UK


Name
Position

Live Multivered Alex Weibel
Engineer Verifying Compliance

Location Pittsburgh, PA
Date Pittsburgh, PA
3/24/2021

((

9

Safety Procedures and Warnings

IMPORTANT: This manual tells you how to carefully and correctly use and operate the XC6e drive.

- Read all parts of this manual before you install or operate the XC6e drive or before you do maintenance to your system.
- To prevent injury to you and damage to the equipment, obey the precautions in this manual.
- All specifications and illustrations are for reference only and were complete and accurate as of the release of this manual. To find the newest information about this product, refer to www.aerotech.com.

If you do not understand the information in this manual, contact Aerotech Global Technical Support.

IMPORTANT: This product has been designed for light industrial manufacturing or laboratory environments. If the product is used in a manner not specified by the manufacturer:

- The protection provided by the equipment could be impaired.
- The life expectancy of the product could be decreased.

DANGER: To decrease the risk of electrical shock, injury, death, and damage to the equipment, obey the precautions that follow.

- 1. Before you do maintenance to the equipment, disconnect the electrical power.
- 2. Restrict access to the XC6e when it is connected to a power source.
- 3. Do not connect or disconnect electrical components, wires, and cables while this product is connected to a power source.

- 4. Wait at least ten (10) minutes after removing the power supply before doing maintenance or an inspection. Otherwise, there is the danger of electric shock.
- 5. There are lethal voltages on the shunt resistor terminals.
- 6. Supply each operator with the necessary protection from live electrical circuits.
- 7. Make sure that all components are grounded correctly and that they obey the local electrical safety requirements.
- 8. Install the necessary precautions to supply safety and protection to the operator.

DANGER: System travel can cause crush, shear, or pinch injuries. Restrict access to all motor and stage parts while your system is connected to a power source.

DANGER: Hot surfaces. The case temperature could exceed 70°C.

DANGER: The shunt resistor dissipates a high quantity of power. To prevent the danger of electric shock or fire, you must obey the precautions that follow:

- Correctly size, mount, and protect the external shunt resistor.
- Protect the wiring to the internal shunt resistor terminals.
- Do not touch the shunt resistor terminals. There are lethal voltages on the terminals.
- Do not touch the surface of the drive or the external shunt resistor. The temperature can exceed 70°C.
- Restrict access to the shunt resistor while it is connected to a power source.

WARNING: To prevent damage to the equipment and decrease the risk of electrical shock and injury, obey the precautions that follow.

- 1. Make sure that all system cables are correctly attached and positioned.
- 2. Do not use the cables or the connectors to lift or move this product.
- 3. Use this product only in environments and operating conditions that are approved in this manual.
- 4. Only trained operators should operate this equipment.

Installation Overview

This image shows the order in which to make connections and settings that are typical to the XC6e. If a custom interconnect drawing was supplied with your system, that drawing is on your Storage Device and shows as a line item on your Sales Order in the Integration section.

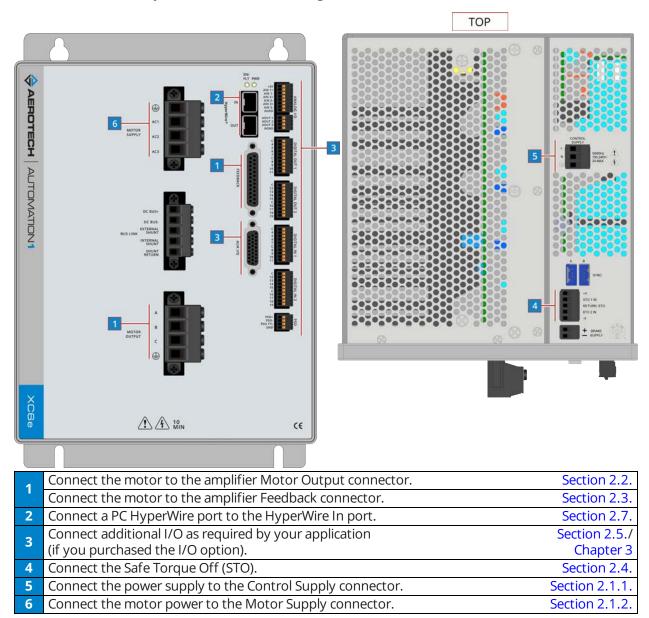


Figure 1: Installation Connection Overview

This page intentionally left blank.

Chapter 1: Introduction

The XC6e is a high performance digital drive based on the HyperWire communication protocol. The drive provides deterministic behavior, auto-identification, is fully software configurable. A double precision floating point DSP controls the digital PID and current loops in the XC6e.

The XC6e offers standard Safe Torque Off (STO) inputs and optional Position Synchronized Output (PSO) outputs. The XC6e is offered with optional encoder interpolation features (-MX2/-MX3), an auxiliary encoder input for dual loop control, dedicated analog and digital I/O (expandable with the -EB1 option), and separate power connections for motor and control supply voltages.

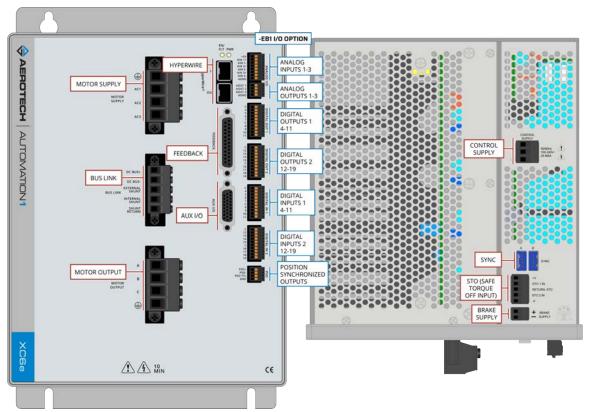


Figure 1-1: XC6e High Power Networked Digital Drive

Table 1-1: Feature Summary

	tures		
Standard Fea		Cartier 2.1.1	
	AC control supply inputs	Section 2.1.1.	
	square wave quadrature encoder input for position and velocity feedback	Section 2.3.1.	
	ncoder support on the Feedback Connector	Section 2.3.1.2.	
	afe brake output	Section 2.3.6.	
	ense inputs	Section 2.4.	
	square wave auxiliary quadrature encoder input or output for PSO	Section 2.5.1.	
	ncoder support on the Auxiliary I/O Connector	Section 2.5.1.2.	
	ll user outputs	Section 2.5.3.	
_	user inputs		
	igital Inputs	Section 2.5.4.	
	gh-Speed Inputs	Section 2.5.5.	
	analog output (±10 V)	Section 2.5.6.	
	differential analog input (± 10 V)	Section 2.5.7.	
	ns to configure an internal shunt resistor	Section 2.8.	
Options			
Peak Current		Section 1.1.	
-10	10 A Peak, 5 A Continuous Current		
-20	20 A Peak, 10 A Continuous Current		
-30	30 A Peak, 10 A Continuous Current		
-50	50 A Peak, 25 A Continuous Current		
-100	100 A Peak, 30/50 A Continuous Current		
Rated Motor	Supply Voltage	Chapter 3	
-240	240 VAC Maximum		
-480	480 VAC Maximum		
Expansion Bo		Chapter 3	
-EB0	No expansion board		
	I/O expansion board		
	 Three 16-bit analog outputs (±10 V) Three 16-bit differential analog inputs (±10 V) 		
-EB1	 16 digital logic inputs (5 - 24 VDC), can be connected to current sourcing 	a or sinking devices	
	 16 digital logic outputs (5 - 24 VDC), can be connected to current sourcing or 16 digital logic outputs (5 - 24 VDC), user defined as current sourcing or 		
	 Digital logic laser firing (PSO) output 	SITIKITIS	
Multiplier	Digital logic laser lifting (F3O) output	Section 2.3.1.3.	
	No angoday multipliay	36(11011.2.3.1.3.	
-MX0	No encoder multiplier		
-MX2	Interpolation circuit allowing for analog sine wave input on the primary enclar interpolation factor of 65,536.		
	Interpolation circuit allowing for analog sine wave input on the primary encoder channel with		
-MX3	an interpolation factor of 65,536 and an auxiliary encoder channel with an i	nterpolation factor	
	of 16,384.		
PSO		Section 2.5.2.	
-PSO1	One-axis PSO firing (includes One-axis Part-Speed PSO)		
-PSO2	Two-axis PSO firing (includes Two-axis Part-Speed PSO)		
-PSO3	Three-axis PSO firing (includes Three-axis Part-Speed PSO)		
-PSO5	Two-axis Part-Speed PSO firing, which uses the PSO firing circuit based off of the commanded vector velocity of up to 2 axes (includes One-Axis PSO).		
	Three-axis Part-Speed PSO firing which uses the PSO firing circuit based off of the commanded		
-PSO6	vector velocity of 3 or more axes (includes One-Axis PSO).		
Version			
-DEFAULT	Firmware Matches Software Line		
-LEGACY	Legacy Firmware Version X.XX.XXX		

The block diagram that follows shows a summary of the connector signals.

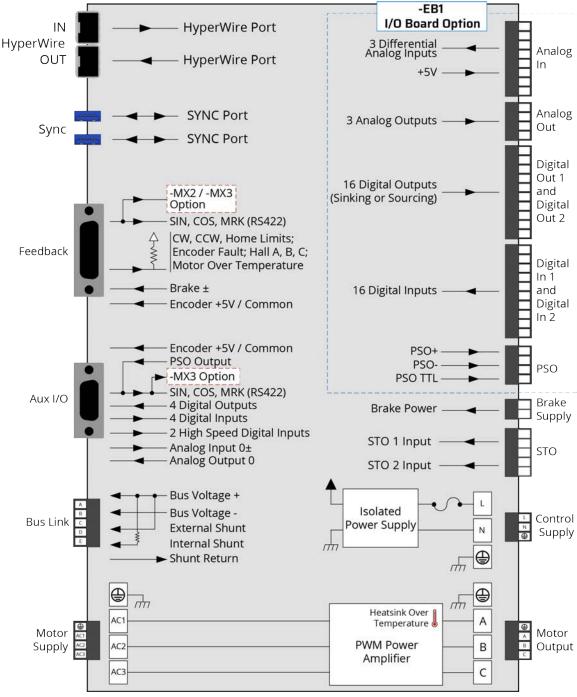


Figure 1-2: Functional Diagram

1.1. Electrical Specifications

Table 1-2: Electrical Specifications

		XC6e-100- 240	XC6e-100- 480	XC6e-50-240	XC6e-50-480	
	Input Voltage	7-240 VAC	7-480 VAC	7-240 VAC	7-480 VAC	
Motor Supply	Input Frequency		50-6	0 Hz		
Wotor Supply	Inrush Current		Not interna	ally limited.		
	Input Current	40 A	40 A	25 A	25 A	
	Input Voltage		100-24	40 VAC		
Control Supply	Input Frequency		50-6	0 Hz		
Control Supply	Inrush Current		120 A _{pk}	@ 240 V		
	Input Power		30	W		
Output Voltage (1)	Output Voltage (1) 340 VDC 680 VDC 340 VDC 680 VDC			680 VDC		
Peak Output Curre	Peak Output Current (1 second) (2) 100 A 100 A 50 A 50		50 A			
Continuous Output Current (2)		50 A	30 A (20 kHz) 50 A (10 kHz)	25 A	25 A	
Power Amplifier Bandwidth		250	2500 Hz maximum (software selectable)			
PWM Switching Fre	quency	20	kHz or 10 kHz (s	oftware selectal	ole)	
Minimum Load Ind	uctance		0.5	mH		
User Power Supply Output		5 VDC (@ 500 mA)				
Modes of Operation Brushless						
Protective Features Output short circuit; Peak over current; DC bus over volt RMS over current; Over temperature; Control power sup under voltage; Power stage bias supply under voltage		ower supply				
Optical and transformer isolation between control and pow stages.			trol and power			
(1) AC input voltage an	d load dependent.					

⁽²⁾ Current is measured as the peak amplitude in any motor phase.

Table 1-3: Electrical Specifications (continued)

	ie-30-480			
Motor Supply Inrush Current Input Current Input Current Input Voltage Input Frequency Inrush Current Input Frequency Inrush Current Input Power Output Voltage Input Power Output Current (1 second) (2) Peak Output Current (2) Formula Supply Input Power Output Voltage (1) Formula Supply Input Power Input P				
Control Supply Input Current Input Voltage Input Voltage Input Frequency Inrush Current Input Power Output Voltage Input Power Output Current (1 second) (2) Peak Output Current (2) Forming Frequency Power Amplifier Bandwidth PWM Switching Frequency Minimum Load Inductance User Power Supply Output Input Power Input Frequency Input Power Input Frequency Input	50-60 Hz			
Control Supply Input Frequency Inrush Current Input Power Output Voltage (1) Peak Output Current (1 second) (2) Continuous Output Current (2) Power Amplifier Bandwidth PWM Switching Frequency Minimum Load Inductance User Power Supply Output Input Voltage (1) 680 VDC 10 A 20 A 20 A 10 A 2500 Hz maximum (software selectable of the continuous	Not internally limited.			
Control Supply Input Frequency Inrush Current Input Power Output Voltage (1) Peak Output Current (1 second) (2) Continuous Output Current (2) Power Amplifier Bandwidth PWM Switching Frequency Minimum Load Inductance User Power Supply Output Input Frequency Input Frequency 680 VDC 10 A 20 A 20 A 10 A 2500 Hz maximum (software selectable of the selectable of t	15 A			
Inrush Current Input Power Output Voltage (1) Peak Output Current (1 second) (2) Continuous Output Current (2) Power Amplifier Bandwidth PWM Switching Frequency Minimum Load Inductance User Power Supply Output Modes of Operation Inrush Current 120 A _{pk} @ 240 V 20 W 10 A 20 A 20 A 20 A 2500 Hz maximum (software selectable of the selecta				
Inrush Current Input Power 20 W Output Voltage (1) 680 VDC Peak Output Current (1 second) (2) 10 A 20 A Continuous Output Current (2) 5 A 10 A Power Amplifier Bandwidth 2500 Hz maximum (software selectable PWM Switching Frequency 20 kHz or 10 kHz (software selectable Minimum Load Inductance 0.5 mH User Power Supply Output 5 VDC (@ 500 mA) Modes of Operation Brushless Output short circuit; Peak over current; DC bus or				
Output Voltage (1) Peak Output Current (1 second) (2) Continuous Output Current (2) Power Amplifier Bandwidth PWM Switching Frequency Minimum Load Inductance User Power Supply Output Modes of Operation 680 VDC 10 A 20 A 10 A 2500 Hz maximum (software selectable of the s				
Peak Output Current (1 second) (2) Continuous Output Current (2) Power Amplifier Bandwidth PWM Switching Frequency Minimum Load Inductance User Power Supply Output Modes of Operation To A 20 A 10 A 2500 Hz maximum (software selectable 20 kHz or 10 kHz (software selectable 30.5 mH) Syde (20 500 mA) Brushless Output short circuit; Peak over current; DC bus or 30 minum 20 minum				
Continuous Output Current (2) Power Amplifier Bandwidth PWM Switching Frequency Minimum Load Inductance User Power Supply Output Modes of Operation S A 10 A 2500 Hz maximum (software selectable 20 kHz or 10 kHz (software selectable 30.5 mH) 5 VDC (@ 500 mA) Brushless Output short circuit; Peak over current; DC bus or 30 minum 20 min	680 VDC			
Power Amplifier Bandwidth 2500 Hz maximum (software selectable 20 kHz or 10 kHz (software selectable 20 kHz or 10 kHz (software selectable 30.5 mH 30	10 A 20 A 30 A			
PWM Switching Frequency Minimum Load Inductance User Power Supply Output Modes of Operation Output Short circuit; Peak over current; DC bus or	15 A			
Minimum Load Inductance User Power Supply Output Modes of Operation Brushless Output short circuit; Peak over current; DC bus or	e)			
User Power Supply Output 5 VDC (@ 500 mA) Modes of Operation Brushless Output short circuit; Peak over current; DC bus or)			
Modes of Operation Brushless Output short circuit; Peak over current; DC bus or				
Output short circuit; Peak over current; DC bus o				
Output short circuit; Peak over current; DC bus over volta RMS over current; Over temperature; Control power supp under voltage; Power stage bias supply under voltage				
stages.	Optical and transformer isolation between control and power stages.			
(1) AC input voltage and load dependent.				

⁽²⁾ Current is measured as the peak amplitude in any motor phase.

1.1.1. System Power Requirements

The following equations can be used to determine total system power requirements. The actual power required from the mains supply will be the combination of actual motor power (work), motor resistance losses, and efficiency losses in the power electronics or power transformer.

Use an EfficiencyFactor of approximately 90% in the following equations.

Brushless Motor

Output Power

Rotary Motors Power Output [W] = Torque [N·m] * Angular velocity[rad/sec]

Linear Motors Power Output [W] = Force [N] * Linear velocity[m/sec]

Rotary or Linear Motors Power Output [W] = Bemf [V] * I(rms) * 3

Power Loss = $3 * I(rms)^2 * R(line-line)/2$

Power Input = (Power Output + Power Loss) / EfficiencyFactor

DC Brush Motor

Power Output [W] = Torque [N·m] * Angular velocity[rad/sec]

Power Loss = $I(rms)^2 * R$

Power Input = (Pout + Ploss) / EfficiencyFactor

1.2. Mechanical Specifications

1.2.1. Mounting and Cooling

Install the XC6e in an IP54 compliant enclosure to comply with safety standards. Make sure that there is sufficient clearance surrounding the drive for free airflow and for the cables and connections.

Table 1-4: Mounting Specifications

		XC6e	
Customer-Supplied Enclosure		IP54 Compliant	
Weight	ight 7 kg		
Mounting Hardware		M4 [#8] screws (four locations, not included)	
Mounting Orientation		Vertical (typical)	
Dimensions		Refer to Section 1.2.2. Dimensions	
Minimum Clearance Airflow		~25 mm	
Iviii iii iiii Cieararice	Connectors	~100 mm	
Operating Temperature		Refer to Section 1.3. Environmental Specifications	

1.2.2. Dimensions

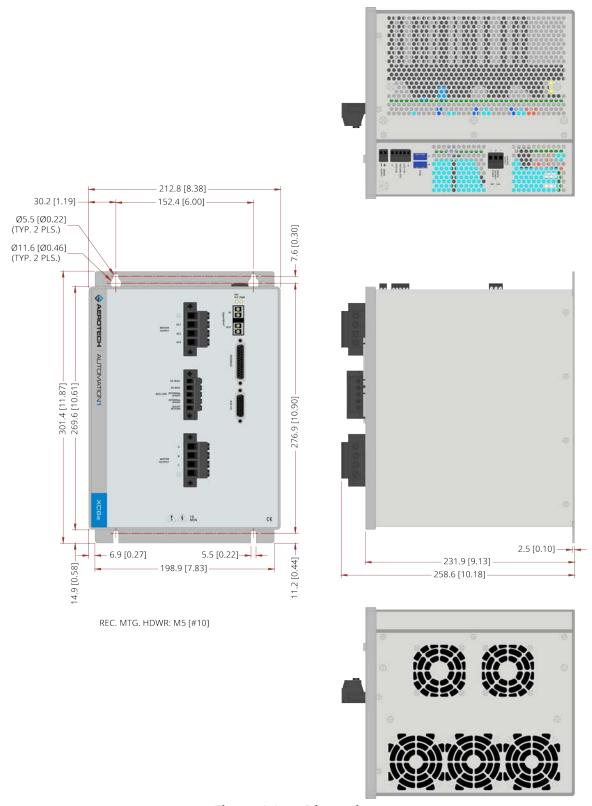


Figure 1-3: Dimensions

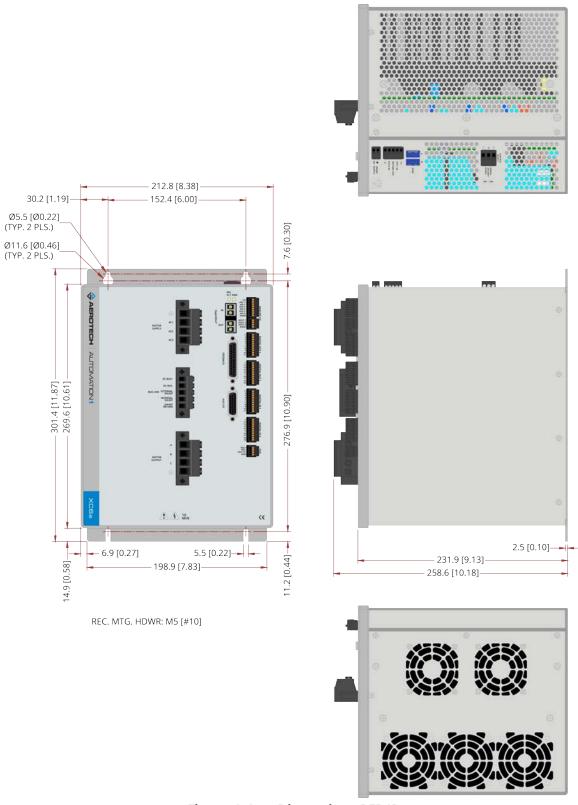


Figure 1-4: Dimensions [-EB1]

1.3. Environmental Specifications

 Table 1-5:
 Environmental Specifications

Ambient	Operating: 0° to 40°C (32° to 104° F)		
Temperature	Storage: -30° to 85°C (-22° to 185° F)		
Humidity	The maximum relative humidity is 80% for temperatures that are less		
Non-condensing	than 31°C and decreases linearly to 50% relative humidity at 40°C.		
	0 m to 2,000 m (0 ft to 6,562 ft) above sea level.		
Operating Altitude	If you must operate this product above 2,000 m or below sea level, contact Aerotech, Inc.		
Pollution Degree 2			
Pollution	Typically only nonconductive pollution occurs.		
Operation	Use only indoors		

1.4. Drive and Software Compatibility

This table shows the available drives and which version of the software first supported each drive. In the **Last Software Version** column, drives that show a specific version number are not supported after that version.

Table 1-6: Drive and Software Compatibility

Drive Type	First Software Version	Last Software Version	
Automation1 XC6e	1.2	Current	

This page intentionally left blank.

Chapter 2: Installation and Configuration

Unpacking the Chassis

IMPORTANT: All electronic equipment and instrumentation is wrapped in antistatic material and packaged with desiccant. Ensure that the antistatic material is not damaged during unpacking.

Inspect the container of the XC6e for any evidence of shipping damage. If any damage exists, notify the shipping carrier immediately.

Remove the packing list from the XC6e container. Make sure that all the items specified on the packing list are contained within the package.

The documentation for the XC6e is on the included installation device. The documents include manuals, interconnection drawings, and other documentation pertaining to the system. Save this information for future reference. Additional information about the system is provided on the Serial and Power labels that are placed on the XC6e chassis.

The system serial number label contains important information such as the:

- Customer order number (please provide this number when requesting product support)
- Drawing number
- System part number

2.1. Input Power Connections

The XC6e has two AC input power connectors. One connector is for control power and the other connector is for motor power. For a full list of electrical specifications, refer to Section 1.1.

2.1.1. Control Supply Connector

The Control Supply input supplies power to the communications and logic circuitry of the XC6e. The $\bf L$ input is connected to an internal fuse. Refer to Table 5-4 for the internal fuse value and part number. The $\bf N$ input is not connected to an internal fuse. An external fuse will be required if $\bf N$ is not connected to Neutral.

The Control Supply contains an internal filter but you could be required to add an external filter for CE compliance. Install the external filter module as close as possible to the XC6e. Use a Schaffner FN2010-6-06, Corcom 10VW1, or similar filter.

IMPORTANT: Refer to local electrical safety requirements to correctly size external system wires.

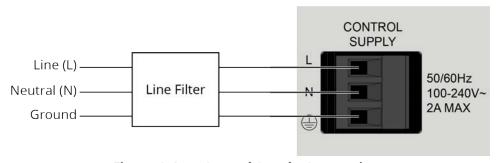


Figure 2-1: Control Supply Connections

Table 2-1: Control Supply Wiring Specifications

Pin	Description	Recommended Wire Size
L	Line (L): 100-240 VAC Control Power Input	0.8 mm ² (#18 AWG)
N	Neutral (N) or 100-240 VAC Control Power Input with external fuse	0.8 mm ² (#18 AWG)
	Protective Ground	0.8 mm ² (#18 AWG)

Table 2-2: Mating Connector Part Numbers for the Control Supply Connector

	Aerotech	Third Party	Screw	Wire Size:
Туре	P/N	P/N	Torque: N·m	mm² [AWG]
3-Pin Terminal Block	ECK00213	Phoenix 1754465	0.5 - 0.6	3.3 - 0.516 [12-30]

2.1.2. Motor Supply Connector

Motor power is applied to the **AC1**, **AC2**, and **AC3** terminals of the XC6e Motor Supply connector. Three phase power is required and must be in a center grounded TT/TN configuration.

For CE compliance, Aerotech recommends that you use an AC line filter. Connect the filter as close as possible to the drive. For more information about the AC line filter, refer to Section 2.1.3.

The system designer must provide branch protection (fuses or a circuit breaker) for the XC6e. Add branch protection in accordance with local electrical safety requirements. For the maximum recommended fuse value for each drive version, refer to Table 2-5. Use time-delay type fuses because of the inrush currents that occur when power is applied to the drive.

IMPORTANT: Refer to local electrical safety requirements to correctly size external system wires.

IMPORTANT: Before you operate the XC6e, install a ground connection for your safety and to prevent damage to the equipment.

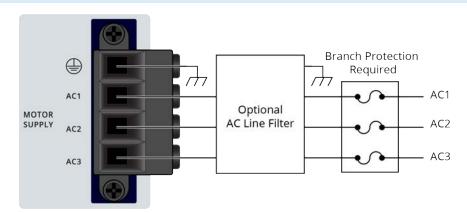


Figure 2-2: Motor Supply Connections

Table 2-3: Motor Supply Connector Wiring Specifications

Pin	XC6e-240 Description	XC6e-480 Description
AC1	7-240 VAC Motor Power Input	7-480 VAC Motor Power Input
AC2	7-240 VAC Motor Power Input	7-480 VAC Motor Power Input
AC3	7-240 VAC Motor Power Input	7-480 VAC Motor Power Input
	Protective Ground	Protective Ground

Table 2-4: Mating Connector Part Numbers for the Motor Supply Connector

Туре	Aerotech	Third Party	Screw	Wire Size:
	P/N	P/N	Torque: N·m	mm² [AWG]
4-Pin Terminal Block	ECK02495	Phoenix 1710352	1.7 - 1.8	8.36 [8]

Table 2-5: Motor Supply Connector Fuse Specifications

Drive Type	Fuse (Time Delay)	Recommended Wire Size	Recommended Fuse Types
XC6e-100	40 A	8.36 mm ² (#8 AWG)	
XC6e-50	25 A	5.25 mm ² (#10 AWG)	• Littelfuse Class RK5 (UL)
XC6e-30	15 A	3.31 mm ² (#12 AWG)	• gG/gL Class (IEC 60269)
XC6e-20	10 A	3.31 mm ² (#12 AWG)	• Type "C" Circuit Breakers
XC6e-10	5 A	3.31 mm ² (#12 AWG)	

2.1.3. Minimizing Noise for EMC/CE Compliance

IMPORTANT: The XC6e is a component designed to be integrated with other electronics. EMC testing must be conducted on the final product configuration.

To reduce electrical noise, observe the following motor feedback and input power wiring techniques.

- 1. Use shielded cable for motor and feedback connectors. Connect the shield to the backshell at each end of the cable.
- 2. Separate motor and power wiring from encoder and I/O wiring.
- 3. Mount drives, power supplies, and filter components on a conductive panel. Mount line filters close to the drive to keep the wire length between the drive and filter to a minimum. Use an AC line filter on the Control Supply such as Schaffner FN2010-6-06 or Corcom 10VW1 or similar. Use an AC line filter on the Motor Supply such as a Schaffner FN258-55-34.
- 4. Use a separate wire for each ground connection to the drive. Use the shortest possible wire length.

The following additional changes could be required for EMC compliance and are recommended during initial EMC system evaluation.

- 1. Add a clamp-on ferrite to the feedback cable close to the drive. [Aerotech PN ECZ02348, Fair-rite PN 0446167281]
- 2. Add a clamp-on ferrite to the Control Supply wires, including the ground wire, close to the drive. [Aerotech PN ECZ02347, Fair-rite PN 0446164281]

2.2. Motor Power Output Connector

The XC6e can be used to drive brushless motors (refer to Section 2.2.1.). For a complete list of electrical specifications, refer to Section 1.1.

IMPORTANT: Refer to local electrical safety requirements to correctly size external system wires.

The 4-pin terminal block style motor output connector is located on the front panel. The pinout for this connector is shown in Table 2-6.

Table 2-6: Motor Power Output Connector Pinout

Pin	Description	Recommended Wire Size	Connector
А	Brushless Phase A Motor Lead	8.36 mm ² (#8 AWG)	
В	Brushless Phase B Motor Lead	8.36 mm ² (#8 AWG)	A B
С	Brushless Phase C Motor Lead	8.36 mm ² (#8 AWG)	c
	Earth Ground to Motor	8.36 mm ² (#8 AWG)	

Table 2-7: Mating Connector Part Numbers for the Motor Power Output Connector

Туре	Aerotech	Third Party	Screw	Wire Size:
	P/N	P/N	Torque: N·m	mm² [AWG]
4-Pin Terminal Block	ECK02495	Phoenix 1710352	1.7 - 1.8	8.36 [8]

2.2.1. Brushless Motor Connections

The configuration shown in Figure 2-3 is an example of a typical brushless motor connection.

Figure 2-3: Brushless Motor Configuration

Table 2-8: Wire Colors for Aerotech-Supplied Brushless Motor Cables

Pin	Wire Color Set 1 ⁽¹⁾	Wire Color Set 2	Wire Color Set 3	Wire Color Set 4		
—	Green/Yellow &	Green/Yellow &	Green/Yellow &	Green/Yellow &		
	Shield ⁽²⁾	Shield	Shield	Shield		
Α	Black	Blue & Yellow	Black #1	Black & Brown		
В	Red	Red & Orange	Black #2	Red & Orange		
C White White & Brown Black #3 Violet & Blue						
(1) Wire Color Set #1 is the wire set typically used by Aerotech.						
(2) "&" in	(2) "&" indicates two wires (Red & Orange); " / " indicates a single wire (Green/White).					

Brushless motors are commutated electronically by the controller. The use of Hall effect devices for commutation is recommended.

The controller requires that the Back-EMF of each motor phase be aligned with the corresponding Hall-effect signal. To ensure proper alignment, motor, Hall, and encoder connections should be verified using one of the following methods: *powered*, through the use of a test program; or *unpowered* using an oscilloscope. Both methods will identify the A, B, and C Hall/motor lead sets and indicate the correct connections to the controller. Refer to Section 2.2.1.1. for powered motor phasing or Section 2.2.1.2. for unpowered motor and feedback phasing.

For Aerotech-supplied systems, the motor, encoder and Hall sensors are correctly configured and connection adjustments are not necessary.

A motor filter module can be installed between the drive and the motor to reduce the effects on PWM generated noise currents.

2.2.1.1. Brushless Motor Powered Motor and Feedback Phasing

Observe the state of the encoder and Hall-effect device signals in the Diagnostics section of the Status Utility.

Table 2-9: Hall Signal Diagnostics

Hall-Signal Status	Definition
	0 V or logic low
ON	5 V or logic high

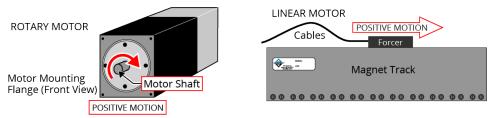


Figure 2-4: Positive Motor Direction

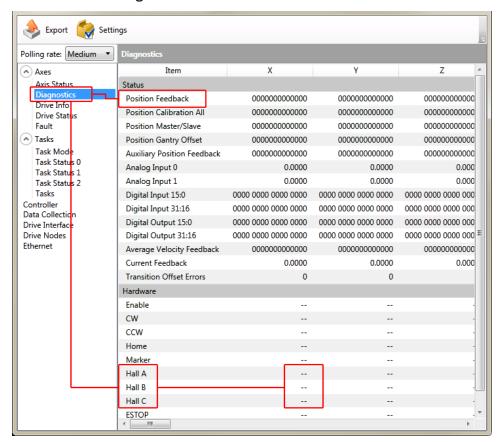


Figure 2-5: Encoder and Hall Signal Diagnostics

2.2.1.2. Brushless Motor Unpowered Motor and Feedback Phasing

Disconnect the motor from the controller and connect the motor in the test configuration shown in Figure 2-6. This method will require a two-channel oscilloscope, a 5V power supply, and six resistors (10,000 ohm, 1/4 watt). All measurements should be made with the probe common of each channel of the oscilloscope connected to a neutral reference test point (TP4, shown in Figure 2-6). Wave forms are shown while moving the motor in the positive direction.



Figure 2-6: Brushless Motor Phasing Oscilloscope Example

With the designations of the motor and Hall leads of a third party motor determined, the motor can now be connected to an Aerotech system. Connect motor lead A to motor connector A, motor lead B to motor connector B, and motor lead C to motor connector C. Hall leads should also be connected to their respective feedback connector pins (Hall A lead to the Hall A feedback pin, Hall B to Hall B, and Hall C to Hall C). The motor is correctly phased when the Hall states align with the Back EMF as shown in (Figure 2-7). Use the CommutationOffset parameter to correct for Hall signal misalignment.

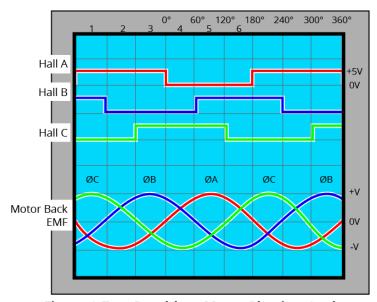


Figure 2-7: Brushless Motor Phasing Goal

2.3. Feedback Connector

The connector pin assignment is shown in Table 2-10 with detailed connection information in the following sections.

Table 2-10: Feedback Connector Pinout

Pin #	Description	ln/Out/Bi	Connector
1	Reserved	N/A	
2	Motor Over Temperature Thermistor	Input	
3	+5V Power (1)	N/A	
4	Plug and Play Serial Data (for Aerotech stages only)	Bidirectional	
5	Hall-Effect Sensor B (brushless motors only)	Input	
6	Encoder Marker Reference Pulse -	Input	
0	Absolute Encoder Clock -	Output	
7	Encoder Marker Reference Pulse +	Input	
/	Absolute Encoder Clock +	Output	• 14
8	Absolute Encoder Data -	Bidirectional	
9	Reserved	N/A	
10	Hall-Effect Sensor A (brushless motors only)	Input	
11	Hall-Effect Sensor C (brushless motors only)	Input	
12	Clockwise End of Travel Limit	Input	
13	Brake Output -	Output	
14	Encoder Cosine +	Input	
15	Encoder Cosine -	Input	
16	+5V Power (1)	N/A	
17	Encoder Sine +	Input	13 25
18	Encoder Sine -	Input	13 -
19	Absolute Encoder Data+	Bidirectional	
20	Signal Common	N/A	
21	Signal Common	N/A	
22	Home Switch Input	Input	
23	Encoder Fault Input	Input	
24	Counterclockwise End of Travel Limit	Input	
25	Brake Output +	Output	
(1) The r	naximum combined current output is 500 mA.		

Table 2-11: Mating Connector Part Numbers for the Feedback Connector

Mating Connector	Aerotech P/N	Third Party P/N
25-Pin D-Connector	ECK00101	FCI DB25P064TXLF
Backshell	ECK00656	Amphenol 17E-1726-2

2.3.1. Primary Encoder Inputs

The primary encoder inputs are accessible through the Feedback connector. Use the PrimaryFeedbackType parameter to configure the XC6e to accept an encoder signal type.

Square Wave encoder signals: Section 2.3.1.1.

Absolute encoder signals: Section 2.3.1.2.

Sine Wave encoder signals (as permitted by the multiplier option): Section 2.3.1.3.

Refer to Section 2.3.1.4. for encoder feedback phasing.

Refer to Section 2.5. for the auxiliary encoder input on the Aux I/O connector.

Table 2-12: Multiplier Options

Option	Primary Encoder Accepts	Auxiliary Encoder Accepts
-MX0	Square Wave or Absolute encoders	Square Wave or Absolute encoders
-MX2	Sine Wave (high performance), Square Wave, or Absolute encoders	Square Wave or Absolute encoders
-MX3	Sine Wave (high performance), Square Wave, or Absolute encoders	Sine Wave (standard performance), Square Wave, or Absolute encoders

IMPORTANT: Physically isolate the encoder wiring from motor, AC power, and all other power wiring

Table 2-13: Primary Encoder Input Pins on the Feedback Connector

Pin #	Description	ln/Out/Bi
3	+5V Power (1)	N/A
6	Encoder Marker Reference Pulse -	Input
	Absolute Encoder Clock -	Output
7	Encoder Marker Reference Pulse +	Input
	Absolute Encoder Clock +	Output
8	Absolute Encoder Data -	Bidirectional
14	Encoder Cosine +	Input
15	Encoder Cosine -	Input
16	+5V Power (1)	N/A
17	Encoder Sine +	Input
18	Encoder Sine -	Input
19	Absolute Encoder Data+	Bidirectional
20	Signal Common	N/A
21	Signal Common	N/A
(1) The maximum combined current output is 500 mA.		

2.3.1.1. Square Wave Encoder

The XC6e accepts RS-422 square wave encoder signals. The XC6e will generate a feedback fault if it detects an invalid signal state caused by an open or shorted signal connection. Use twisted-pair wiring for the highest performance and noise immunity.

Table 2-14: Square Wave Encoder Specifications

Specification	Value
Encoder Frequency	10 MHz maximum (25 ns minimum edge separation)
x4 Quadrature Decoding	40 million counts/sec

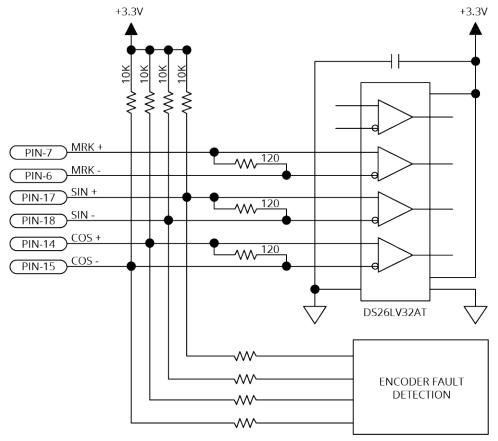


Figure 2-8: Square Wave Encoder Schematic (Feedback Connector)

2.3.1.2. Absolute Encoder

The XC6e retrieves absolute position data along with encoder fault information through a serial data stream from the absolute encoder. Use twisted-pair wiring for the highest performance and noise immunity. You cannot echo an absolute encoder signal.

Refer to Figure 2-9 for the serial data stream interface.

Refer to the Help file for information on how to set up your EnDat or BiSS absolute encoder parameters.

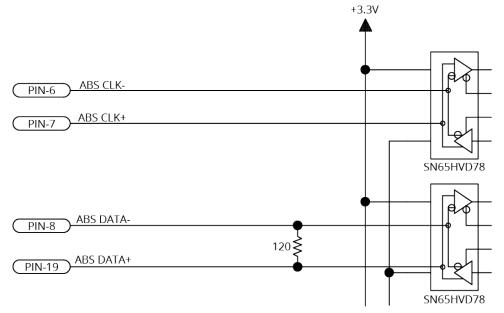


Figure 2-9: Absolute Encoder Schematic (Feedback Connector)

2.3.1.3. Sine Wave Encoder [-MX2/-MX3 Option]

The Sine Wave Encoder option provides higher positioning resolution by subdividing the fundamental output period of the encoder into smaller increments. The amount of subdivision is specified by the PrimaryEncoderMultiplicationFactor parameter. Use Encoder Tuning to adjust the value of the gain, offset, and phase balance controller parameters to get the best performance. For more information, refer to the Help file.

High resolution or high-speed encoders can require increased bandwidth for correct operation. Use the High Speed Mode of the PrimaryEncoderMultiplierSetup parameter to enable the high bandwidth mode. Because this mode increases sensitivity to system noise, use it only if necessary.

The XC6e can generate emulated encoder signals. These signals can be output on the Auxiliary Encoder (AUX) connector, SYNC port connector, or used internally by the PSO. Refer to the EncoderDivider and PrimaryEmulatedQuadratureDivider parameters and the encoder output functions in the Help file for more information.

For the highest performance, use twisted pair double-shielded cable with the inner shield connected to signal common and the outer shield connected to frame ground. Do not join the inner and outer shields in the cable.

Table 2-15:	Sine Wave	Encoder	Specifications
-------------	-----------	----------------	-----------------------

Value				
Specification		Primary	Auxiliary	
Input Frequency (max)		450 kHz, 2 MHz	450 kHz	
Input Amplitude (1)		0.6 to 1.75 Vpk-pk		
Interpolation Factor (max)	-MX2	65,536	N/A	
	-MX3	65,536	16,384	
-MX2/-MX3 Primary Encoder Channel Interpolation Latency		800 nsec (analog input to quadrature output)		
Input Common Mode		1.5 to 3	3.5 VDC	
(1) Measured as SIN(+) - SIN(-) or Co	OS(+) - COS(-)	•		

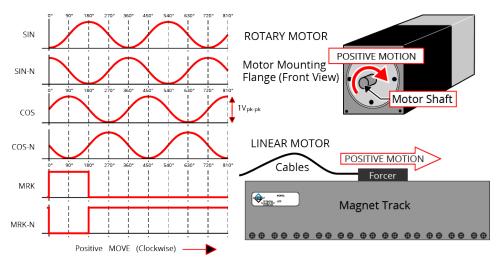


Figure 2-10: Sine Wave Encoder Phasing Reference Diagram

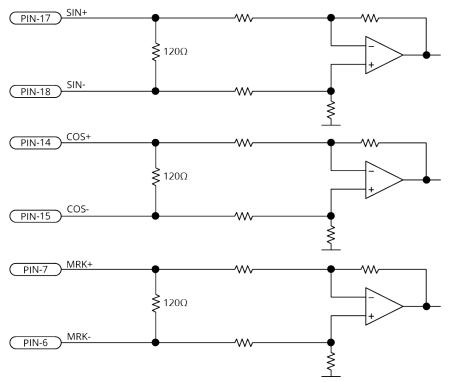


Figure 2-11: Sine Wave Encoder Schematic (Feedback Connector)

2.3.1.4. Encoder Phasing

Incorrect encoder polarity will cause the system to fault when enabled or when a move command is issued. Figure 2-12 illustrates the proper encoder phasing for clockwise motor rotation (or positive forcer movement for linear motors). To verify, move the motor by hand in the CW (positive) direction while observing the position of the encoder in the diagnostics display (see Figure 2-13).

For dual loop systems, the velocity feedback encoder is displayed in the diagnostic display (Figure 2-13).

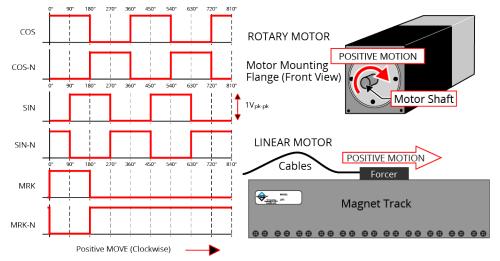


Figure 2-12: Encoder Phasing Reference Diagram (Standard)

IMPORTANT: Encoder manufacturers may refer to the encoder signals as A, B, and Z. The proper phase relationship between signals is shown in Figure 2-12.

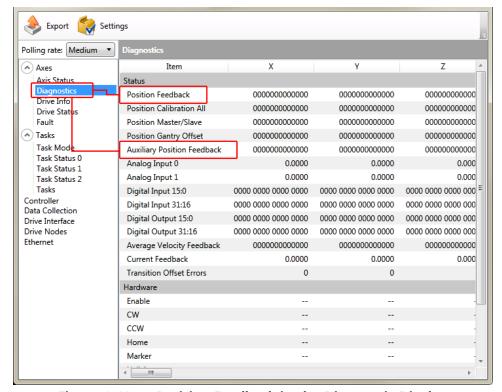


Figure 2-13: Position Feedback in the Diagnostic Display

2.3.2. Hall-Effect Inputs

The Hall-effect switch inputs are recommended for AC brushless motor commutation but not absolutely required. The Hall-effect inputs accept 5 VDC level signals. Hall states (0,0,0) or (1,1,1) are invalid and will generate a "Hall Fault" axis fault.

Refer to Section 2.2.1.1. for Hall-effect device phasing.

Table 2-16: Hall-Effect Feedback Pins on the Feedback Connector

Pin #	Description	ln/Out/Bi		
3	+5V Power (1)	N/A		
5	Hall-Effect Sensor B (brushless motors only)	Input		
10	Hall-Effect Sensor A (brushless motors only)	Input		
11	Hall-Effect Sensor C (brushless motors only)	Input		
16	+5V Power (1)	N/A		
20	Signal Common	N/A		
21	Signal Common N/A			
(1) The r	(1) The maximum combined current output is 500 mA.			

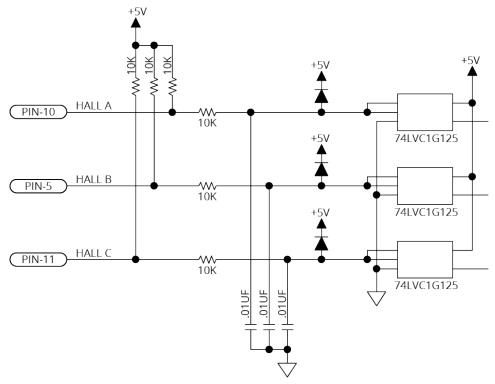


Figure 2-14: Hall-Effect Inputs Schematic (Feedback Connector)

2.3.3. Thermistor Input

The thermistor input is used to detect a motor over temperature condition by using a positive temperature coefficient sensor. As the temperature of the sensor increases, so does the resistance. Under normal operating conditions, the resistance of the thermistor is low which will result in a low input signal. As the increasing temperature causes the thermistor's resistance to increase, the sensor will trigger an over temperature fault.

The thermistor is connected between Pin 2 and Signal Common. The nominal trip value of the sensor is 1.385 k Ω . The circuit includes a 12 k Ω internal pull-up resistor which corresponds to a trip voltage of +0.52 V.

Table 2-17: Thermistor Input Pin on the Feedback Connector

Pin #	Description	ln/Out/Bi
2	Motor Over Temperature Thermistor	Input

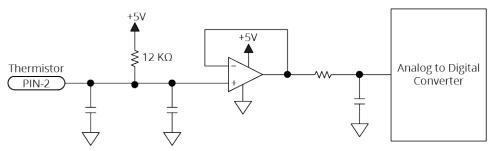


Figure 2-15: Thermistor Input Schematic (Feedback Connector)

2.3.4. Encoder Fault Input

The encoder fault input is for use with encoders that have a fault output. This is provided by some manufactures and indicates a loss of encoder function. The active state of this input is parameter configurable and the controller should be configured to disable the axis when the fault level is active. The nominal trip voltage of the encoder fault input is +2.5 V.

Table 2-18: Encoder Fault Input Pin on the Feedback Connector

Pin #	Description	ln/Out/Bi
23	Encoder Fault Input	Input

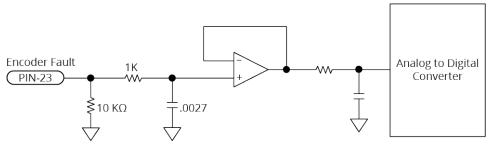


Figure 2-16: Encoder Fault Input Schematic (Feedback Connector)

2.3.5. End of Travel and Home Limit Inputs

End of Travel (EOT) limits are required to define the end of the physical travel on linear axes. Positive or clockwise motion is stopped by the clockwise (CW) end of travel limit input. Negative or counterclockwise motion is stopped by the counterclockwise (CCW) end of travel limit input. The Home Limit switch can be parameter configured for use during the home cycle, however, the CW or CCW EOT limit is typically used instead. All of the end-of-travel limit inputs accept 0-5 VDC level signals. Limit directions are relative to the encoder polarity in the diagnostics display (refer to Figure 2-19).

Table 2-19: End of Travel and Home Limit Pins on the Feedback Connector

Pin #	Description	ln/Out/Bi
12	Clockwise End of Travel Limit	Input
16	+5V Power	N/A
20	Signal Common	N/A
21	Signal Common	N/A
22	Home Switch Input	Input
24	Counterclockwise End of Travel Limit	Input

The active state (High/Low) of the EOT limits is software selectable (by the EndOfTravelLimitSetup axis parameter). Figure 2-17 shows the possible wiring configurations for normally-open and normally-closed switches and the parameter setting to use for each configuration.

IMPORTANT: Use NPN-type normally-closed limit switches (Active High) to provide failsafe behavior in the event of an open circuit.

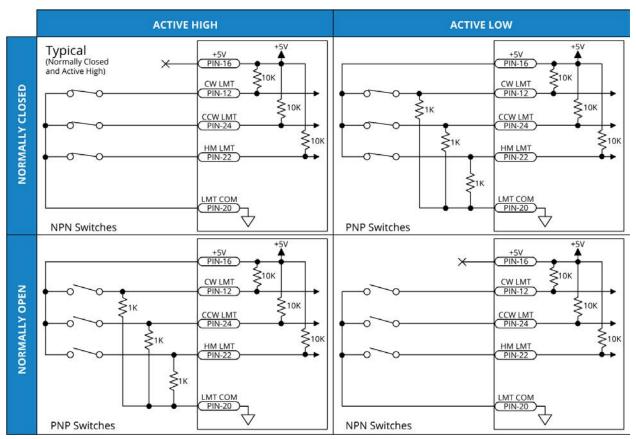


Figure 2-17: End of Travel and Home Limit Input Connections

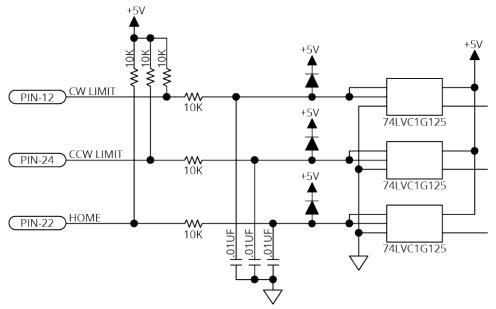


Figure 2-18: End of Travel and Home Limit Input Schematic (Feedback Connector)

2.3.5.1. End of Travel and Home Limit Phasing

If the EOT limits are reversed, you will be able to move further into a limit but be unable to move out. To correct this, swap the connections to the CW and CCW inputs at the Feedback connector or swap the CW and CCW limit functionality in the software using the EndOfTravelLimitSetup parameter. View the logic level of the EOT limit inputs in the Diagnostics display (shown in Figure 2-19).

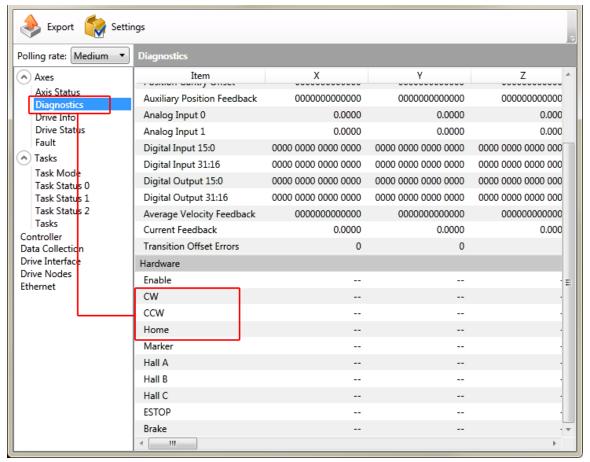


Figure 2-19: End of Travel and Home Limit Input Diagnostic Display

2.3.6. Brake Outputs

The XC6e has a dedicated brake control circuit. Configure the brake with the BrakeSetup parameter for automatic control (typical). You can also use software commands to directly control the brake output.

Refer to Section 2.6. for more information on powering the brake circuit.

Table 2-20: Brake Output Pins on the Feedback Connector

Pin #	Description	ln/Out/Bi
13	Brake Output -	Output
25	Brake Output +	Output

Table 2-21: Brake Control Specifications

Specification	Value
Maximum Voltage	24 VDC
Maximum Current	1 A

A varistor must be connected across the brake to minimize voltage transients.

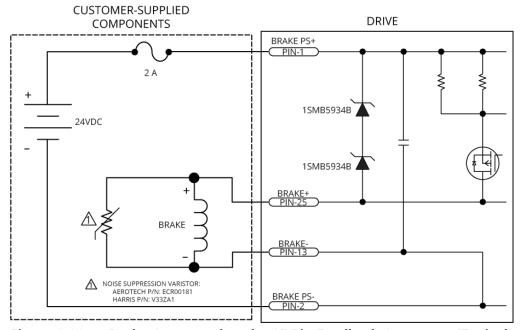


Figure 2-20: Brake Connected to the 25-Pin Feedback Connector (Typical)

2.4. Safe Torque Off Input (STO)

The STO circuit is comprised of two identical channels, each of which must be energized in order for the XC6e to produce motion. Each STO input is opto-isolated and accepts 24V levels directly without the need for external current limiting resistors.

IMPORTANT: The XC6e might be equipped with an STO bypass circuit board. The bypass circuit board defeats the STO safety circuit and allows the system to run at all times. To use the STO safety functionality, remove the circuit board and make connections as outlined in this section.

IMPORTANT: The application circuit and its suitability for the desired safety level is the sole responsibility of the user of the XC6e.

WARNING: STO wires must be insulated to prevent short circuits between connector pins. The primary concern is a short circuit between STO 1 IN and STO 2 IN wire strands.

Table 2-22: STO Connector Pinout

Pin #	Signal	Description	In/Out/Bi	Connector
1	Power Supply +	Used to defeat STO by connecting to STO 1 IN and STO 2 IN	N/A	
2	STO 1 IN	STO Channel 1 Positive Input	Input	+V STO 1 IN
3	RETURN	STO Negative Input	Input	RETURN STO 2 IN
4	STO 2 IN	STO Channel 2 Positive Input	Input	-V
5	Power Supply -	Used to defeat STO by connecting to RETURN	N/A	

Table 2-23: Mating Connector Part Numbers for the STO Connector

	Aerotech	Phoenix	Tightening Torque	Wire Size:
Description	P/N	P/N	(Nm)	AWG [mm²]
5-Pin Terminal Block	ECK02393	1827622	0.22 - 0.25	2.5 - 0.05 [14-30]

Table 2-24: STO Electrical Specifications

Status	Value
STO off (motion allowed)	18-24 V, 7 ma
STO on (safe state entered, no motion)	0-6 V
Recommended Wire Gauge	22-26 AWG (0.5 - 0.14 mm ²)
STO System Power Supply	PELV
STO Wire Length (maximum)	50 m

Figure 2-21 shows one safety device connected to multiple XC6es in parallel.

WARNING: The XC6e does not check for short circuits on the external STO wiring. If this is not done by the external safety device, short circuits on the wiring must be excluded. Refer to EN ISO 13849-2. For Category 4 systems, the exclusion of short circuits is mandatory.

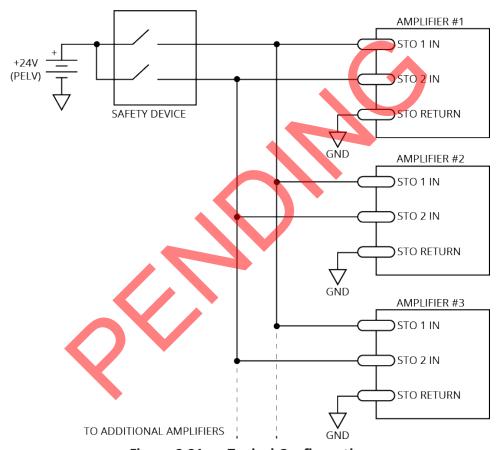


Figure 2-21: Typical Configuration

2.4.1. STO Standards

Table 2-25 describes and specifies the safety requirements at the system level for the Safe Torque Off (STO) feature of the XC6e. This assumes that diagnostic testing is performed according to Section 2.4.4. and Table 2-26.

Table 2-25: STO Standards

Standard	Maximum Achievable Safety
EN/IEC 61800-5- 2:2016	SIL 3
EN/IEC 61508-1:2010	SIL 3
EN/IEC 61508-2:2010	SIL 3
EN ISO 13849-1:2015	Category 4, PL e
EN/IEC 62061:2005 with Amendments	SIL 3

Table 2-26: STO Standards Data

Standard	Value
	MTTF _D > 1000 years,
EN ISO 13849-1:2015	DC _{AVG} 99%
	Maximum PL e, Category 4
	Lifetime = 20 years
	No proof test required
EN ISO 13849-1:2015	Interval for manual STO test:
EN/IEC 61508	Once per year for SIL2/PL d/category 3
	Once per three months for SIL3/PL e/category 3
	Once per day for SIL3/PL e/category 4
FN/450 C4500	SIL3
EN/IEC 61508	PFH < 3 FIT SFF > 99%

2.4.2. STO Functional Description

The motor can only be activated when voltage is applied to both STO 1 and STO 2 inputs. The STO state will be entered if power is removed from either the STO 1 or the STO 2 inputs. When the STO state is entered, the motor cannot generate torque or force and is therefore considered safe.

The STO function is implemented with two redundant channels in order to meet stated performance and SIL levels. STO 1 disconnects the high side power amplifier transistors and STO 2 disconnects the low side power amplifier transistors. Disconnecting either set of transistors effectively prevents the XC6e from being able to produce motion.

The XC6e software monitors each STO channel and will generate an Emergency Stop software fault when either channel signals the stop state. Each STO channel contains a fixed delay which allows the XC6e to perform a controlled stop before the power amplifier transistors are turned off.

A typical configuration requiring a controlled stop has the Emergency Stop Fault mask bit set in the FaultMask, FaultMaskDecel, and FaultMaskDisable parameters. This stops the axis using the rate specified by the AbortDecelRate parameter. The software will disable the axis as soon as the deceleration ramp is complete. This is typically configured to occur before the STO channel turns off the power amplifier transistors.

The software controlled stop functionality must be excluded when considering overall system safety. This is because the software is not safety rated and cannot be included as part of the safety function.

The XC6e will tolerate short diagnostic pulses on the STO 1+ and STO 2+ inputs. The parameter "STOPulseFilter" specifies the maximum pulse width that the XC6e will ignore.

To resume normal operation, apply power to both STO 1 and STO 2 inputs and use the *Acknowledge All* button or the AcknowledgeAll() or FaultAcknowledge() function to clear the Emergency Stop software fault. The recommended use of the Emergency Stop Fault fault mask bits prevent the system from automatically restarting.

You can achieve longer delay times through the use of an external delay timer, such as the Omron G9SA-321 Safety Relay Unit. Place this device between the system ESTOP wiring and the XC6e's STO inputs. Connect the ESTOP signal directly to a digital input, in addition to the external timer, to allow the XC6e to begin a software-controlled stop as soon as the ESTOP signal becomes active. Use the EmergencyStopFaultInput parameter to configure a digital input as an ESTOP input.

Non-standard STO delay times are provided by special factory order. In this case, the non-standard STO delay time is indicated by a label placed on the slice amplifier's main connector (STO DELAY = xx sec).

Table 2-27: STO Signal Delay

	Value
STO Time Delay	450-550 msec

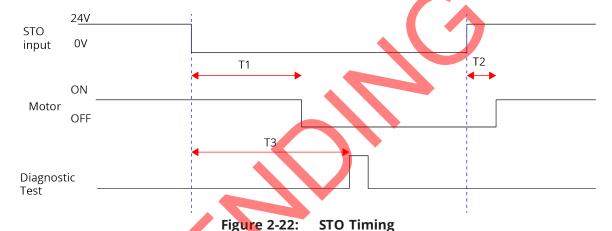
Table 2-28: Motor Function Relative to STO Input State

STO 1	STO 2	Motor Function	
Unpowered	Unpowered	No force/torque	
Unpowered (1)	Powered (1)	No force/torque	
Powered (1)	Unpowered (1)	No force/torque	
Powered Powered Normal Operation			
1. This is considered a Fault Condition since STO 1 and STO 2 do not match. Refer to Section 2.4.4.			

2.4.3. STO Startup Validation Testing

Verify the state of the STO 1 and STO 2 channels by manually activating the external STO hardware. Each STO channel must be tested separately in order to detect potential short circuits between the channels. The current state of the STO 1 and STO 2 inputs is shown in the Status Utility, A"-" indicates that the STO input is powered by a high voltage level (24 V). An "ON" indicates that the voltage source has been removed from the input (open circuit or 0 V), and that the STO channel is in the safe state.

DANGER: The STO circuit does not remove lethal voltage from the motor terminals. AC mains power must be removed before servicing.


2.4.4. STO Diagnostics

Activation of STO means removing power from the XC6e's STO inputs. This is typically done by pressing the emergency stop switch. The XC6e initiates a diagnostic check every time the STO is activated after the Diagnostic Test Delay Time has elapsed. The diagnostic check verifies that each channel has entered the safe state. The XC6e is held in the safe state if it determines that one of the channels has not properly entered the safe state. An open circuit or short to 24 V in either STO channel will result in this condition (refer to Section 2.4.3.). The Status Utility screen can be used to verify the levels of the STO input signals while trouble shooting.

In order to meet the listed SIL level, the STO circuit must be activated (power removed from both inputs) according to the interval specified in Table 2-26.

Table 2-29: STO Timing

Time	Description	Value
T1	STO Delay Time (STO input active to motor power off)	450-550 msec
T2	STO deactivated to motor power on (the software is typically configured so that the motor does not automatically re-energize).	< 1 msec
T3	Diagnostic Test Delay Time	550-610 msec

The software is typically configured to execute a controlled stop when the STO state is first detected. If power is reapplied to the STO inputs before the STO Delay Time, an STO hardware shutdown will not occur but a software stop may, depending on the width of the STO pulse. The controller will ignore STO active pulses shorter in length than the STOPulseFilter parameter setting.

2.5. Auxiliary I/O Connector

The Auxiliary I/O connector has 1 analog input, 6 digital inputs, 1 analog output, 4 digital outputs, a secondary line driver encoder input, and a secondary absolute encoder interface.

Table 2-30: Auxiliary I/O Connector Pinout

Pin#	Description	In/Out/Bi	Connector
1	Auxiliary Sine +	Bidirectional	
1	Absolute Encoder Data +	Bidirectional	
2	Auxiliary Sine -	Bidirectional	
	Absolute Encoder Data -	Bidirectional	
3	High-Speed Input 20 + / PSO External Sync. +	Input	
4	High-Speed Input 20 - / PSO External Sync	Input	
5	High-Speed Input 21 +	Input	
6	High-Speed Input 21 -	Input	
7	Digital Output 0	Output	
8	Digital Output 1	Output	
9	Digital Output 2	Output	
10	Auxiliary Cosine +	Bidirectional	
10	Absolute Encoder Clock +	Output	(B)
11	Auxiliary Cosine-	Bidirectional	
' '	Absolute Encoder Clock -	Output	
12	+5 Volt (500 mA max)	N/A	
13	Analog Input 0+ (Differential)	Input	
14	Analog Input 0- (Differential)	Input	
15	Digital Output Common	N/A	$\begin{bmatrix} \breve{\Theta} & \breve{\Theta} & \breve{O} \end{bmatrix}$
16	Digital Output 3	Output	
17	Digital Input 0 / CCW EOT Input (1)	Input	
18	Digital Input 1 / CW EOT Input (1)	Input	
19	Auxiliary Marker- / PSO output ⁽²⁾ / TTL Output	Bidirectional	
20	Auxiliary Marker+ / PSO output ⁽²⁾	Bidirectional	
21	Common	N/A	
22	Analog Output 0	Output	
23	Analog Common	N/A	
24	Digital Input Common	N/A	
25	Digital Input 2 / Home Input (1)	Input	
26	Digital Input 3	Input	
	are configured option		
(2) For P	SO, refer to Section 2.5.2.		

(2) 1 01 1 3 07 1 61 61 60 3 6 6 6 10 11 2 13 12 1

Table 2-31: Mating Connector Part Numbers for the Auxiliary I/O Connector

Mating Connector	Aerotech P/N	Third Party P/N		
Connector	ECK01259	Kycon K86-AA-26P		
Backshell ECK01022 Amphenol 17-1725-2				
NOTE: These items are provided as a set under the Aerotech P/N: MCK-26HDD.				

2.5.1. Auxiliary Encoder Inputs

The Auxiliary Encoder connector gives you a second encoder input channel. This channel is typically used for dual loop applications.

Use the AuxiliaryFeedbackType parameter to configure the XC6e to accept an encoder signal type.

Square Wave encoder signals: Section 2.5.1.1.

Absolute encoder signals: Section 2.5.1.2.

Sine Wave encoder signals (with the -MX3 option): Section 2.5.1.3.

You can configure the Auxiliary Encoder interface as an output that will transmit encoder signals for external use. Use the DriveEncoderOutputConfigureInput() function to configure the Sine ± and Cosine ± connector pins as RS-422 outputs. You can only echo incremental square wave primary encoder inputs or, with the -MX2 or -MX3 option, incremental sine wave primary encoder inputs. You cannot use the absolute encoder interface when you echo incremental signals.

Table 2-32: Auxiliary Encoder Pins on the Auxiliary I/O Connector

Pin#	Description	In/Out/Bi
1	Auxiliary Sine +	Bidirectional
'	Absolute Encoder Data +	Bidirectional
2	Auxiliary Sine -	Bidirectional
	Absolute Encoder Data -	Bidirectional
10	Auxiliary Cosine +	Bidirectional
10	Absolute Encoder Clock +	Output
11	Auxiliary Cosine-	Bidirectional
11	Absolute Encoder Clock -	Output
12	+5 Volt (500 mA max)	N/A
19	Auxiliary Marker- / PSO output ⁽²⁾ / TTL Output	Bidirectional
20	Auxiliary Marker+ / PSO output (2)	Bidirectional
21	Common	N/A
(2) For PS	D, refer to Section 2.5.2.	

2.5.1.1. Square Wave Encoder

The XC6e accepts RS-422 square wave encoder signals. The XC6e will generate a feedback fault if it detects an invalid signal state caused by an open or shorted signal connection. Use twisted-pair wiring for the highest performance and noise immunity.

Table 2-33: Square Wave Encoder Specifications

Specification	Value
Encoder Frequency	10 MHz maximum (25 ns minimum edge separation)
x4 Quadrature Decoding	40 million counts/sec

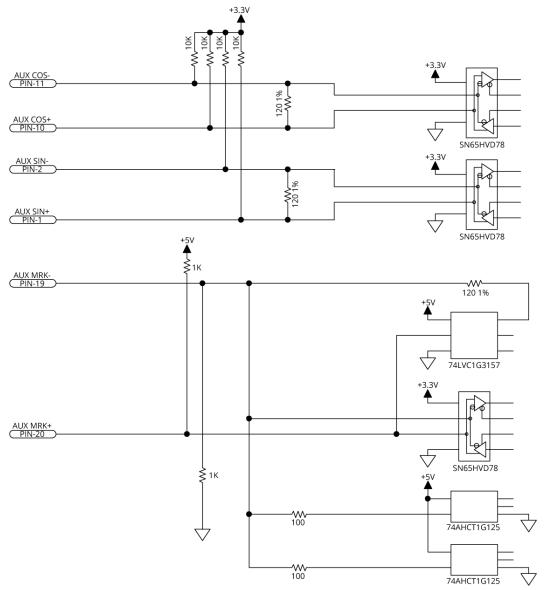


Figure 2-23: Square Wave Encoder Interface (Aux I/O Connector)

2.5.1.2. Absolute Encoder

The XC6e retrieves absolute position data along with encoder fault information through a serial data stream from the absolute encoder. Use twisted-pair wiring for the highest performance and noise immunity. You cannot use an absolute encoder with incremental signals on the Auxiliary I/O Connector. Refer to Figure 2-24 for the serial data stream interface.

Refer to the Help file for information on how to set up your EnDat or BiSS absolute encoder parameters.

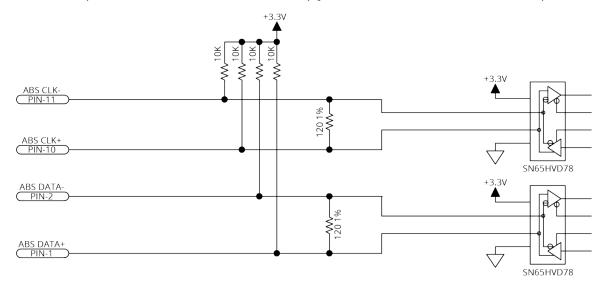


Figure 2-24: Absolute Encoder Schematic (Auxiliary I/O Connector)

2.5.1.3. Sine Wave Encoder [-MX3 Option]

The Sine Wave Encoder option provides higher positioning resolution by subdividing the fundamental output period of the encoder into smaller increments. The amount of subdivision is specified by the AuxiliaryEncoderMultiplicationFactor parameter. Use Encoder Tuning to adjust the value of the gain, offset, and phase balance controller parameters to get the best performance. For more information, refer to the Help file.

You cannot use the sine wave encoder on the auxiliary connector with the -MX3 multiplier option as an input to the PSO. The -MX3 option does not generate emulated quadrature signals from the auxiliary connector.

For the highest performance, use twisted pair double-shielded cable with the inner shield connected to signal common and the outer shield connected to frame ground. Do not join the inner and outer shields in the cable.

Table 2-34: Sine Wave Encoder Specifications

Specification		Value		
		Primary	Auxiliary	
Input Frequency (max)		450 kHz, 2 MHz	450 kHz	
Input Amplitude (1)		0.6 to 1.75 Vpk-pk		
Internalistica Factor (may)	-MX2	65,536	N/A	
Interpolation Factor (max)	-MX3	65,536	16,384	
-MX2/-MX3 Primary Encoder Channel Interpolation Latency		800 nsec (analog input to quadrature output)		
Input Common Mode		1.5 to 3.5 VDC		
(1) Measured as SIN(+) - SIN(-) or CC)S(+) - COS(-)			

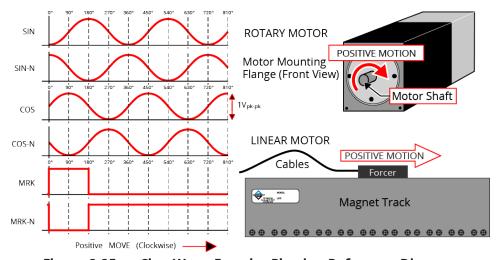


Figure 2-25: Sine Wave Encoder Phasing Reference Diagram

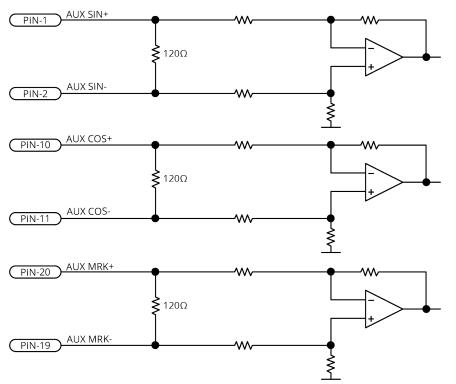


Figure 2-26: Sine Wave Encoder Schematic (Auxiliary I/O Connector)

2.5.2. Position Synchronized Output (PSO)

The PSO signal is available on the dual-function AUX Marker/PSO signal lines. Use the PSO pulse external sync functions to configure the auxiliary marker as an output. Refer to the Help file for more information.

Use the PsoOutputConfigureOutput() function to transmit the PSO output signal on the Marker \pm pins differentially. Or, use the PsoOutputConfigureOutput() function to configure the Marker - pin as a 5V TTL PSO output.

The differential signal format is recommended when using long cable lengths in noisy environments or when high frequency pulse transmission is required. It is best to locate the line receiver close to the receiving electronics. A 5 V TTL signal is used to drive an opto coupler or general purpose TTL input. This signal is active high and is driven to 5 V when a PSO fire event occurs. When the drive is reset or after initial power up, the PSO pins (refer to Table 2-36), are not actively driven and the fail safe state is defined by pull-up and pull-down resistors as shown in Figure 2-27.

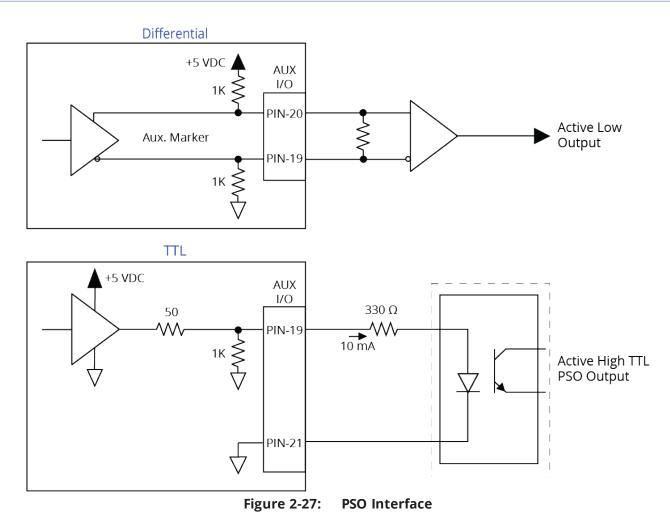

The -EB1 I/O option board has additional PSO signal formats. Refer to Section 3.5. for more information.

Table 2-35: PSO Specifications

Specification		Value
Output	ΠL	5 V, 16 mA (max)
Maximum PSO Output (Fire) Frequency	TTL	12.5 MHz
Maximum P3O Output (Fire) Frequency	RS-422	12.5 MHz
Output Latency	TTL	15 ns
[Fire event to output change]	RS-422	15 ns

Table 2-36: PSO Pins on the Auxiliary I/O Connector

Pin#	Description	In/Out/Bi
19	Auxiliary Marker- / PSO output / TTL Output	Bidirectional
20	Auxiliary Marker+ / PSO output	Bidirectional
21	Common	N/A

2.5.3. Digital Outputs

Optically-isolated solid-state relays drive the digital outputs. You can connect the digital outputs in current sourcing or current sinking mode but you must connect all four outputs in the same configuration. Refer to Figure 2-29 and Figure 2-30.

You must install suppression diodes on digital outputs that drive relays or other inductive devices. To see an example of a current sourcing output that has diode suppression, refer to Figure 2-29. To see an example of a current sinking output that has diode suppression, refer to Figure 2-30

The digital outputs are not designed for high-voltage isolation applications and they should only be used with ground-referenced circuits.

The digital outputs have overload protection. They will resume normal operation when the overload is removed.

Table 2-37: Digital Output Specifications

Digital Output Specifications	Value	
Maximum Voltage	24 V (26 V Maximum)	
Maximum Sink/Source Current	250 mA/output	
Output Saturation Voltage	0.9 V at maximum current	
Output Resistance	3.7 Ω	
Rise / Fall Time	250 μs (2K pull up to 24V)	
Reset State	Output Off (High Impedance State)	

Table 2-38: Digital Output Pins on the Auxiliary I/O Connector

Pin#	Description	In/Out/Bi
7	Digital Output 0	Output
8	Digital Output 1	Output
9	Digital Output 2	Output
15	Digital Output Common	N/A
16	Digital Output 3	Output

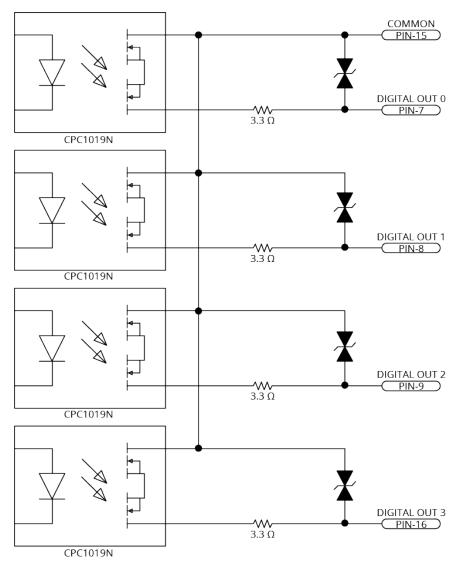
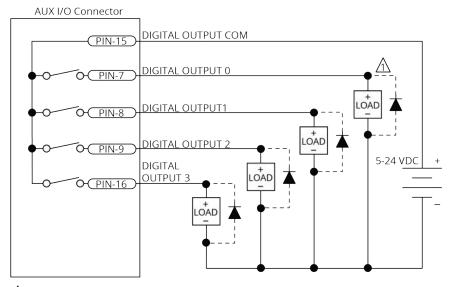
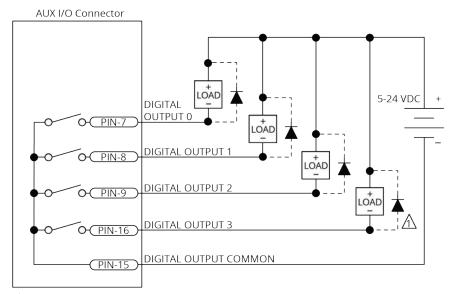




Figure 2-28: Digital Output Schematic (Aux I/O Connector)

DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

Figure 2-29: Digital Outputs Connected in Current Sourcing Mode

DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

Figure 2-30: Digital Outputs Connected in Current Sinking Mode

2.5.4. Digital Inputs

You can connect the digital inputs to current sourcing or current sinking devices but you must connect all four inputs in the same configuration. Refer to Figure 2-32 and Figure 2-31. The digital inputs are not designed for high-voltage isolation applications. They should only be used with ground-referenced circuits.

Table 2-39: Digital Input Specifications

Input Voltage	Approximate Input Current	Turn On Time	Turn Off Time
+5 V to +24 V	6 mA	10 µs	43 µs

Table 2-40: Digital Input Pins on the Auxiliary I/O Connector

Pin#	Description	In/Out/Bi
17	Digital Input 0 / CCW EOT Input (1)	Input
18	Digital Input 1 / CW EOT Input (1)	Input
24	Digital Input Common	N/A
25	Digital Input 2 / Home Input (1)	Input
26	Digital Input 3	Input
(1) Software configured option		

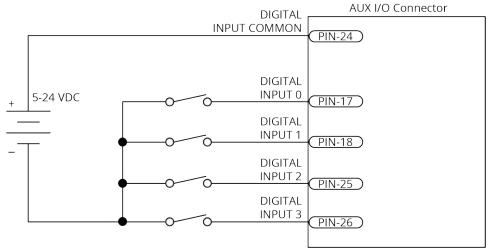


Figure 2-31: Digital Inputs Connected to Current Sinking Devices

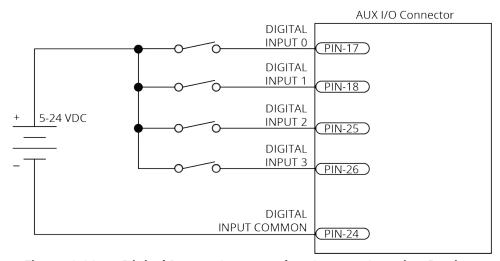


Figure 2-32: Digital Inputs Connected to Current Sourcing Devices

2.5.5. High-Speed Inputs

High-speed inputs 20 and 21 can be used as general purpose inputs or as the trigger signal for high speed data collection. Refer to the DriveDataCaptureConfigureTrigger() function topic in the Help file for more information.

You can use the external PSO synchronization functions to synchronize waveform generation with an external synchronization signal. When you activate this feature, the PSO Waveform module will not generate the configured waveform when an output event is received until the rising edge of the synchronization signal occurs.

Table 2-41: High-Speed Input Specifications

. abic =			
Specification	on Value		
Input Voltage	5V - 24 V input voltages		
Input Current	10 mA		
Input Device	HCPL-0630		
Delay	50 nsec		

Table 2-42: High-Speed Input Pins on the Auxiliary I/O Connector

Pin#	Description	In/Out/Bi
3	High-Speed Input 20 + / PSO External Sync. +	Input
4	High-Speed Input 20 - / PSO External Sync	Input
5	High-Speed Input 21 +	Input
6	High-Speed Input 21 -	Input

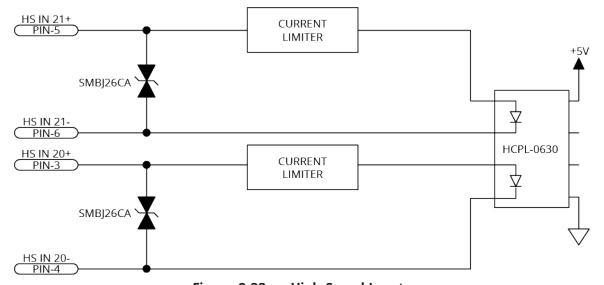


Figure 2-33: High-Speed Inputs

2.5.6. Analog Output O

The analog output can be set from within a program or it can be configured to echo the state of select servo loop nodes.

The analog output is set to zero when you power on the system or reset the drive.

Table 2-43: Analog Output Specifications

Specification	Value
Output Voltage	-10 V to +10 V
Output Current	5 mA
Resolution (bits)	16 bits

Table 2-44: Analog Output Pins on the Auxiliary I/O Connector

Pin#	Description	In/Out/Bi
22	Analog Output 0	Output
23	Analog Common	N/A

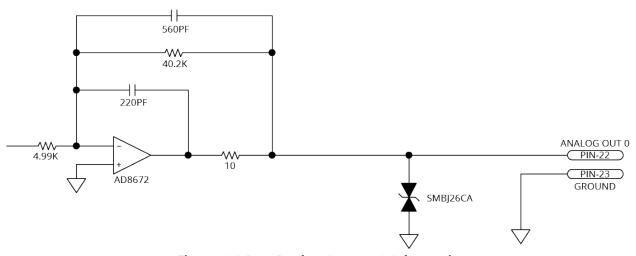


Figure 2-34: Analog Output 0 Schematic

2.5.7. Analog Input O (Differential)

To interface to a single-ended, non-differential voltage source, connect the signal common of the source to the negative input and connect the analog source signal to the positive input. A floating signal source must be referenced to the analog common. Refer to Figure 2-35.

Table 2-45: Analog Input Specifications

Specification	Value	
(Al+) - (Al-)	+10 V to -10 V ⁽¹⁾	
Resolution (bits)	16 bits	
Input Impedance	1 ΜΩ	
1. Signals outside of this range may damage the input		

Table 2-46: Analog Input Pins on the Auxiliary I/O Connector

Pin#	Description	ln/Out/Bi
13	Analog Input 0+ (Differential)	Input
14	Analog Input 0- (Differential)	Input
23	Analog Common	N/A

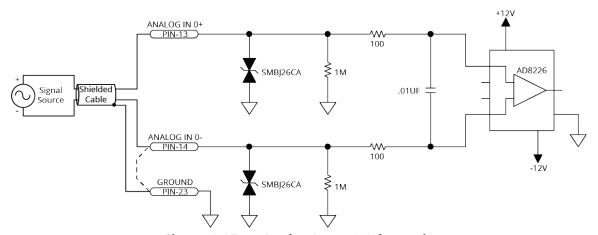


Figure 2-35: Analog Input 0 Schematic

2.6. Brake Power Supply Connector

This port is the power supply connection to the on-board brake control circuit. Refer to Section 2.3.6. for more information about the brake output interface.

Table 2-47: Brake Power Supply Connector Pinout

Pin#	Description	In/Out/Bi	Connector
1	Brake Power Supply (+)	Input	+
2	Brake Power Supply (-)	Input	-

Table 2-48: Mating Connector Part Numbers for the Brake Power Supply Connector

Description	Aerotech P/N	Phoenix P/N	Tightening Torque (Nm)	Wire Size: AWG [mm²]
2-Pin Terminal Block	ECK02390	1827616	0.22 - 0.25	0.14 - 1.5 [26-16]

2.7. HyperWire Interface

The HyperWire bus is the high-speed communications connection from the controller. It operates at 2 gigabits per second. The controller sends all command and configuration information through the HyperWire bus.

HyperWire cables can be safely connected to or disconnected from a HyperWire port while the PC and/or drive is powered on. However, any changes to the HyperWire network topology will disrupt communication and you must reset the controller to re-establish communication.

WARNING: Do not connect or disconnect HyperWire cables while you are loading firmware or damage to the drives may occur.

Table 2-49: HyperWire Card Part Number

Part Number	Description
HYPERWIRE-PCIE	HyperWire adapter, PCIe x4 interface

Table 2-50: HyperWire Cable Part Numbers

Part Number	Description
HYPERWIRE-AO10-5	HyperWire cable, active optical, 0.5 m
HYPERWIRE-AO10-10	HyperWire cable, active optical, 1.0 m
HYPERWIRE-AO10-30	HyperWire cable, active optical, 3.0 m
HYPERWIRE-AO10-50	HyperWire cable, active optical, 5.0 m
HYPERWIRE-AO10-200	HyperWire cable, active optical, 20.0 m

2.8. Shunt Options

DANGER: The shunt resistor dissipates a high quantity of power. To prevent the danger of electric shock or fire, you must obey the precautions that follow:

- Correctly size, mount, and protect the external shunt resistor.
- Protect the wiring to the internal shunt resistor terminals.
- Do not touch the shunt resistor terminals. There are lethal voltages on the terminals.
- Do not touch the surface of the drive or the external shunt resistor. The temperature can exceed 70°C.
- Restrict access to the shunt resistor while it is connected to a power source.

You have two shunt connection options: Internal and External. You cannot connect to both shunt options at the same time.

The DC Bus+ and DC Bus- connections provide access to the DC motor supply. The shunt and bus connections do not contain internal fuses. Refer to Table 2-51 for the connector pinout.

The shunt resistor is used to dissipate excess energy and keep the internal drive voltage within safe levels. The drive will turn this resistor "ON" when the internal bus voltage reaches a specific range based off of the voltage option that was ordered (refer to the Turn-On Range in Table 2-53).

Internal Shunt Connections: Connect the Internal Shunt pin to the Shunt Return pin.

External Shunt Connections: Connect your shunt resistor between the External Shunt pin and the Shunt Return pin.

Table 2-51: Bus Link Connector Pinout

Pin	Description	Recommended Wire Size	Connector
Α	DC Bus +	8.36 mm ² (#8 AWG)	
В	DC Bus -	8.36 mm ² (#8 AWG)	DC BUS+
С	External Shunt	1.5 mm ² (#16 AWG)	EXTERNAL SHUNT
D	Internal Shunt	1.5 mm ² (#16 AWG)	INTERNAL SHUNT SHUNT RETURN
Е	Shunt Return	1.5 mm ² (#16 AWG)	

Table 2-52: Mating Connector Part Numbers for the Bus Link Connector

Description	Aerotech P/N	Phoenix P/N	Tightening Torque (N·m)	Wire Size: mm² [AWG]
5-Pin Terminal Block	ECK02494	1784088	0.5 - 0.8	1.5-8.36 [16-8]

Table 2-53: Internal Shunt Specifications

Option	Description	Part Numbers Vishay/Dale [Aerotech]	Turn-On Range (VDC)	Turn-Off Range (VDC)
-240	50 Ω (min), 300 W; 4000 μF Effective Bus Capacitance	RBEF030050R00KFBVT [ECR01039]	380 - 395	360 - 370
-480	125 Ω (min), 300 W; 1500 μ F Effective Bus Capacitance	RBEF0300125R0KFBV [ECR01045]	865 - 880	815 - 830

Maximum Recommended Shunt Current Table 2-54:

Peak Current Option	Value
-10	10 A
-20	10 A
-30	10 A
-50	20 A
-100	20 A

Equation 1:

Calculate the kinetic energy of the system. Any energy that is not lost to the system could be regenerated to the DC bus.

$$E_M=\left[rac{1}{2}
ight]\left[J_M+J_L
ight]\omega_M^2$$
 or $E_M=\left[rac{1}{2}
ight]\left[M_M+M_L
ight]v_M^2$ (for Inear motors)

rotor inertia (kg·m²) J_{M} load inertia (kg·m²) J_L

motor speed before deceleration (rad/s) ω_{m}

 M_{M} forcer mass (kg) M_{I} load mass (kg) velocity (m/s) v_{m}

Equation 2:

You will need a shunt resistor if the regenerated energy is greater than the Maximum Additional Storage Energy that the internal bus capacitor can store (Table 2-55).

$$E_{Ca}=rac{1}{2}C\left(V_{M}^{2}-V_{NOM}^{2}
ight)$$

C bus capacitor (F) [4,000 μ F or 1500 μ F]

 V_{M} turn on voltage for shunt circuit (V) [380 V or 865 V] nominal bus voltage (V) [160 V or 320 V, Typical] $\mathsf{V}_{\mathsf{NOM}}$

[320 V or 680 V, Typical]

Table 2-55: Maximum Additional Storage Energy for a Standard XC6e

Bus Voltage	Maximum Additional Energy	
320 V	84 J	
680 V	214 J	

If a shunt resistor is required, calculate the value of resistance necessary to dissipate the energy.

Equations 3, 4, and 5:

Calculate the parameters of the shunt resistor.

Equation 3:

$$P_{PEAK} = rac{E_M - E_{Ca}}{t_D}$$

peak power that the regeneration circuit must accommodate (W) P_{PEAK}

deceleration time (s)

Equation 4:

$$P_{AV} = rac{E_M - E_{Ca}}{t_{CYCLE}}$$

P_{AV} average power dissipated on shunt resistor (W)

 t_{CYCLE} time between deceleration events (s)

Equation 5:

$$R = rac{\left(2V_M - V_{HYS}
ight)^2}{4P_{PEAK}}$$

V_{HYS} hysteresis voltage of regeneration circuit (V) [20 V or 40 V, Typical (refer to Table 2-53)]

Additional useful equations:

$$1 \text{ rad/s} = 9.55 \text{ rpm}$$

2.9. Sync Port

The Sync port is a bi-directional high speed proprietary interface that lets you transmit encoder signals between drives. This is typically used for multi-axis PSO applications where one or two drives send their encoder signals to a main drive that has the PSO logic and PSO output signal. The XC6e contains two Sync ports, labeled A and B.

To avoid signal contention, all Sync ports default to the input state during reset and immediately after power is applied to the drive.

Table 2-56: Sync-Related Functions

Function	Description	
DriveEncoderOutputConfigureDivider(),		
DriveEncoderOutputConfigureInput(),	Configure each Cure port as an input or an output	
DriveEncoderOutputOn(),	Configure each Sync port as an input or an output	
DriveEncoderOutputOff()		
PsoDistanceConfigureInputs()	Let the PSO to track the SYNC A or SYNC B port.	
PsoWindowConfigureInput()	Let the F30 to track the 3TNC A of 3TNC B port.	

The Sync port uses low-voltage differential signaling (LVDS) and standard USB 3.0 type A (cross over) cables.

Table 2-57: Sync Port Cables

Part Number	Desciption
CBL-SYNC-3	Length 3 dm; Connectors: USB Type A to USB Type A
CBL-SYNC-5	Length 5 dm; Connectors: USB Type A to USB Type A
CBL-SYNC-7	Length 7 dm; Connectors: USB Type A to USB Type A
CBL-SYNC-10	Length 10 dm; Connectors: USB Type A to USB Type A

2.10. System Interconnection

Click on the image below to open a separate pdf window with a larger view of the drawing.

Figure 2-36: System Wiring Drawing (Best Practice)

2.11. PC Configuration and Operation Information

For more information about hardware requirements, PC configuration, programming, system operation, and utilities, refer to the Help file.

This page intentionally left blank.

Chapter 3: -EB1 I/O Option Board

The -EB1 I/O option board has 16 digital inputs, 16 digital outputs, 3 analog inputs, 3 analog outputs, and PSO outputs.

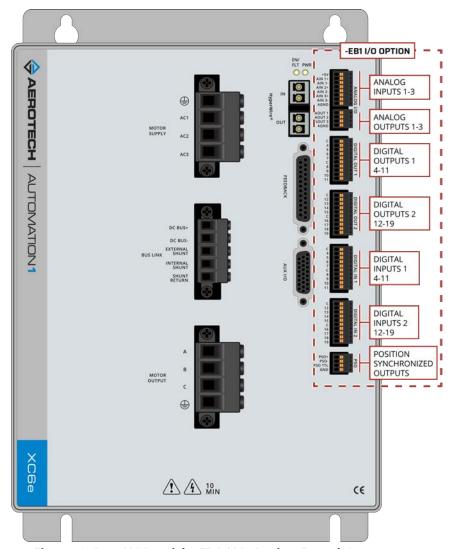


Figure 3-1: XC6e with -EB1 I/O Option Board Connectors

3.1. Digital Outputs [-EB1]

Optically-isolated solid-state relays drive the digital outputs. You can connect the digital outputs in current sourcing or current sinking mode but you must connect all four outputs in a port in the same configuration. Refer to Figure 3-3 and Figure 3-4.

The digital outputs are not designed for high-voltage isolation applications and they should only be used with ground-referenced circuits.

You must install suppression diodes on digital outputs that drive relays or other inductive devices. To see an example of a current sourcing output that has diode suppression, refer to Figure 3-3. To see an example of a current sinking output that has diode suppression, refer to Figure 3-4

The digital outputs have overload protection. They will resume normal operation when the overload is removed.

Table 3-1: Digital Output Specifications [-EB1]

Digital Output Specifications	Value
Maximum Voltage	24 V (26 V Maximum)
Maximum Sink/Source Current	250 mA/output
Output Saturation Voltage	0.9 V at maximum current
Output Resistance	3.7 Ω
Rise / Fall Time	250 μs (2K pull up to 24V)
Reset State	Output Off (High Impedance State)

Table 3-2: Digital Output 1 Connector Pinout [-EB1]

Pin#	Description	In/Out/Bi	Connector
1	Output Common for Outputs 4-7	N/A	
2	Output 4 (Optically-Isolated)	Output	C
3	Output 5 (Optically-Isolated)	Output	4
4	Output 6 (Optically-Isolated)	Output	5
5	Output 7 (Optically-Isolated)	Output	6 7
6	Output Common for Outputs 8-11	N/A	c l
7	Output 8 (Optically-Isolated)	Output	8 9
8	Output 9 (Optically-Isolated)	Output	10
9	Output 10 (Optically-Isolated)	Output	11
10	Output 11 (Optically-Isolated)	Output	

Table 3-3: Mating Connector Part Numbers for the Digital Output 1 Connector [-EB1]

Mating Connector	Aerotech P/N	Third Party P/N	Wire Size: mm ² [AWG]
10-Pin Terminal Block	ECK02395	Phoenix 1700841	0.5 - 0.14 [20-26]

Table 3-4: Digital Output 2 Connector Pinout [-EB1]

Pin#	Description	In/Out/Bi	Connector
1	Output Common for Outputs 12-15	N/A	
2	Output 12 (Optically-Isolated)	Output	
3	Output 13 (Optically-Isolated)	Output	12
4	Output 14 (Optically-Isolated)	Output	13
5	Output 15 (Optically-Isolated)	Output	14
6	Output Common for Outputs 16-19	N/A	C
7	Output 16 (Optically-Isolated)	Output	16
8	Output 17 (Optically-Isolated)	Output	17
9	Output 18 (Optically-Isolated)	Output	19
10	Output 19 (Optically-Isolated)	Output	

Table 3-5: Mating Connector Part Numbers for the Digital Output 2 Connector [-EB1]

Mating Connector	Aerotech P/N	Third Party P/N	Wire Size: mm² [AWG]
10-Pin Terminal Block	ECK02395	Phoenix 1700841	0.5 - 0.14 [20-26]

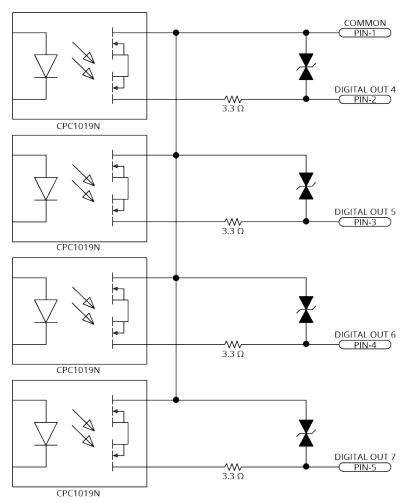
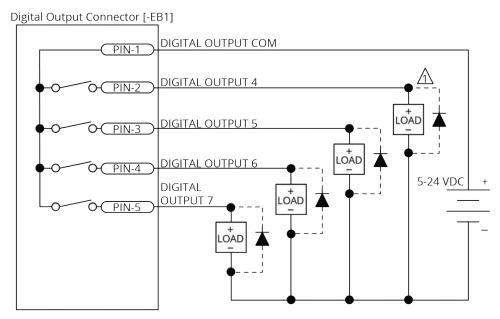
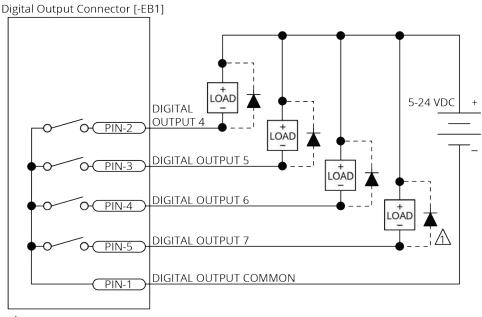




Figure 3-2: Digital Outputs Schematic [-EB1]

 \bigwedge DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

Figure 3-3: Digital Outputs Connected in Current Sourcing Mode [-EB1]

DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

Figure 3-4: Digital Outputs Connected in Current Sinking Mode [-EB1]

3.2. Digital Inputs [-EB1]

Input bits are arranged in groups of 4 and each group shares a common pin. This lets a group be connected to current sourcing or current sinking devices, based on the connection of the common pin in that group.

To be able to connect an input group to current sourcing devices, connect the input group's common pin to the power supply return (-). Refer to Figure 3-6.

To be able to connect an input group to current sinking devices, connect the input group's common pin to the power supply source (+). Refer to Figure 3-7.

The digital inputs are not designed for high-voltage isolation applications. They should only be used with ground-referenced circuits.

Table 3-6: Digital Input Specifications [-EB1]

Input Voltage	Approximate Input Current	Turn On Time	Turn Off Time
+5 V to +24 V	6 mA	10 µs	43 µs

Table 3-7: Digital Input 1 Connector Pinout [-EB1]

Pin#	Description	ln/Out/Bi	Connector
1	Input Common for Inputs 4-7	N/A	
2	Input 4 (Optically-Isolated)	Input	C
3	Input 5 (Optically-Isolated)	Input	4
4	Input 6 (Optically-Isolated)	Input	5
5	Input 7 (Optically-Isolated)	Input	7 3
6	Input Common for Inputs 8-11	N/A	C D
7	Input 8 (Optically-Isolated)	Input	8 8
8	Input 9 (Optically-Isolated)	Input	10
9	Input 10 (Optically-Isolated)	Input	11
10	Input 11 (Optically-Isolated)	Input	

Table 3-8: Mating Connector Part Numbers for the Digital Input 1 Connector [-EB1]

Mating Connector	Aerotech P/N	Third Party P/N	Wire Size: mm ² [AWG]
10-Pin Terminal Block	ECK02395	Phoenix 1700841	0.5 - 0.14 [20-26]

Table 3-9: Digital Input 2 Connector Pinout [-EB1]

Pin#	Description	In/Out/Bi	Connector
1	Input Common for Inputs 12-15	N/A	
2	Input 12 (Optically-Isolated)	Input	
3	Input 13 (Optically-Isolated)	Input	12
4	Input 14 (Optically-Isolated)	Input	13
5	Input 15 (Optically-Isolated)	Input	14
6	Input Common for Inputs 16-19	N/A	C D
7	Input 16 (Optically-Isolated)	Input	16
8	Input 17 (Optically-Isolated)	Input	18
9	Input 18 (Optically-Isolated)	Input	19
10	Input 19 (Optically-Isolated)	Input	

Table 3-10: Mating Connector Part Numbers for the Digital Input 2 Connector [-EB1]

Mating Connector	Aerotech P/N	Third Party P/N	Wire Size: mm² [AWG]
10-Pin Terminal Block	ECK02395	Phoenix 1700841	0.5 - 0.14 [20-26]

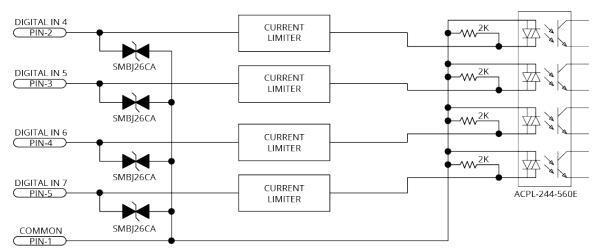


Figure 3-5: Digital Inputs Schematic [-EB1]

IMPORTANT: Each bank of four inputs must be connected in an all sourcing or all sinking configuration.

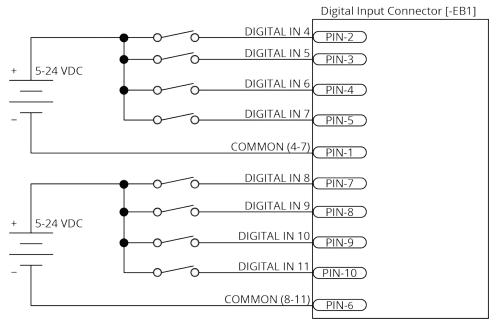


Figure 3-6: Digital Inputs Connected to Current Sourcing (PNP) Devices [-EB1]

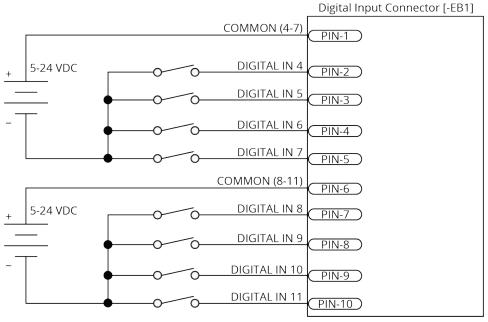


Figure 3-7: Digital Inputs Connected to Current Sinking (NPN) Devices [-EB1]

3.3. Analog Outputs [-EB1]

The analog output can be set from within a program or it can be configured to echo the state of select servo loop nodes.

The analog output is set to zero when you power on the system or reset the drive.

Table 3-11: Analog Output Specifications [-EB1]

Specification	Value
Output Voltage	-10 V to +10 V
Output Current	5 mA
Resolution (bits)	16 bits

Table 3-12: Analog Output Connector Pinout [-EB1]

Pin #	Description	In/Out/Bi	Connector
1	Analog Output 1	Output	101
2	Analog Output 2	Output	AO1 AO2
3	Analog Output 3	Output	AO3
4	Ground	N/A	AGND DI

Table 3-13: Mating Connector Part Numbers for the Analog Output Connector [-EB1]

Туре	Aerotech P/N	Third Party P/N	Wire Size: mm² [AWG]
4-Pin Terminal Block	ECK02399	Phoenix 1768004	0.5- 0.14 [20-26]

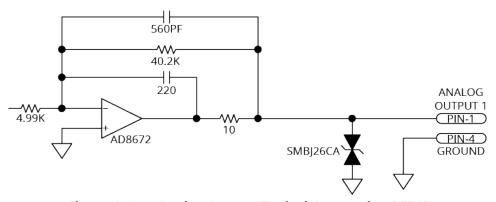


Figure 3-8: Analog Output Typical Connection [-EB1]

3.4. Analog Inputs [-EB1]

To interface to a single-ended, non-differential voltage source, connect the signal common of the source to the negative input and connect the analog source signal to the positive input. A floating signal source must be referenced to the analog common. Refer to Figure 3-9.

Table 3-14: Differential Analog Input Specifications [-EB1]

Specification	Value		
(AI+) - (AI-)	+10 V to -10 V ⁽¹⁾		
Resolution (bits)	16 bits		
Input Impedance	1 ΜΩ		
1. Signals outside of this range may damage the input			

Table 3-15: Analog Input Connector Pinout [-EB1]

Pin#	Description	In/Out/Bi	Connector
1	+5V (250 mA max)	N/A	
2	Analog Input 1+	Input	+5V
3	Analog Input 1-	Input	Al1+
4	Analog Input 2+	Input	Al1 - Al2+
5	Analog Input 2-	Input	AI2-
6	Analog Input 3+	Input	Al3+
7	Analog Input 3-	Input	AI3 - AGND
8	Ground	N/A	AGIND

Table 3-16: Mating Connector Part Numbers for the Analog Input Connector [-EB1]

Mating Connector	Aerotech P/N	Third Party P/N	Wire Size: mm² [AWG]
8-Pin Terminal Block	ECK02397	Phoenix 1908101	0.5 - 0.14 [20-26]

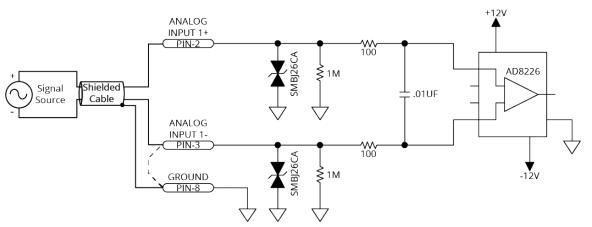


Figure 3-9: Analog Input Typical Connection [-EB1]

3.5. Position Synchronized Output Interface [-EB1]

The PSO output signal is available on the -EB1 option board in two signal formats: TTL and Isolated.

Table 3-17: PSO Specifications [-EB1]

Specification		Value
Output	ΠL	5 V, 16 mA (max)
Output	Isolated	5-24 V, 250 mA
Maximum PSO Output (Fire) Frequency	ΠL	12.5 MHz
Maximum P3O Output (Fire) Frequency	Isolated	5 MHz
Output Latency	ΠL	5 ns
[Fire event to output change]	Isolated	150 ns

Table 3-18: PSO Interface Connector Pinout [-EB1]

Pin #	Description	ln/Out/Bi	Connector
1	PSO Output+	Output	DCO+
2	PSO Output-	Output	PSO+
3	PSO Output (TTL)	Output	TTL
4	Ground	N/A	GND OIL

Table 3-19: Mating Connector Part Numbers for the PSO Interface Connector [-EB1]

Туре	Aerotech P/N	Third Party P/N	Wire Size: mm² [AWG]
4-Pin Terminal Block	ECK02399	Phoenix 1768004	0.5- 0.14 [20-26]

Isolated Signals

This output signal is a fully-isolated 5-24V compatible output capable of sourcing or sinking current. This output is normally open and only conducts current when a PSO fire event occurs.

The PSO Isolated Outputs are overload protected and will turn off if the maximum output current is exceeded.

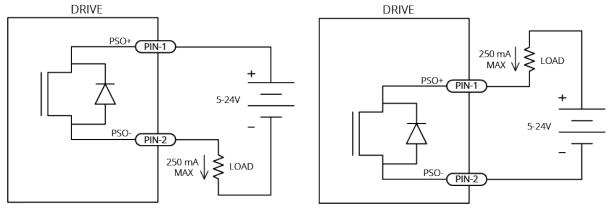


Figure 3-10: PSO Output Sources Current

Figure 3-11: PSO Output Sinks Current

TTL Signals

This output signal is a 5V TTL signal which is used to drive an opto coupler or general purpose TTL input. This signal is active high and is driven to 5V when a PSO fire event occurs.

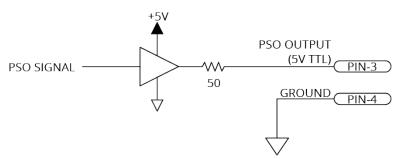


Figure 3-12: PSO TTL Outputs Schematic

Chapter 4: Cables and Accessories

IMPORTANT: Find Aerotech cable drawings on the website at http://www.aerotechmotioncontrol.com/manuals/index.aspx.

Table 4-1: Standard Interconnection Cables

Cable Part #	Description
Joystick	See Section 4.1.
ECZ01231	BBA32 Interconnect Cable

4.1. Joystick Interface

Aerotech Multi-Axis Joystick (NEMA12 (IP54) rated) is powered from 5 V and has a nominal 2.5 V output in the center detent position. Three buttons are used to select axis pairs and speed ranges. An optional interlock signal is used to indicate to the controller that the joystick is present. Joystick control will not activate unless the joystick is in the center location. Third party devices can be used provided they produce a symmetric output voltage within the range of -10 V to +10 V.

Connecting joystick with an Aerotech cable, all Aerotech cables are labeled to identify the connector and connections. The joystick parameters must be set to match the analog and digital I/O connections.

The following drawings illustrate how to connect a single- or two-axis joystick. Refer to the Help file for programming information about how to change joystick parameters.

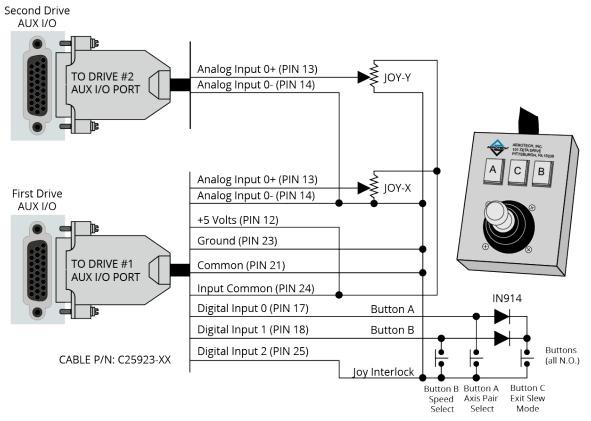


Figure 4-1: Two Axis Joystick Interface (to the Aux I/O of two drives)

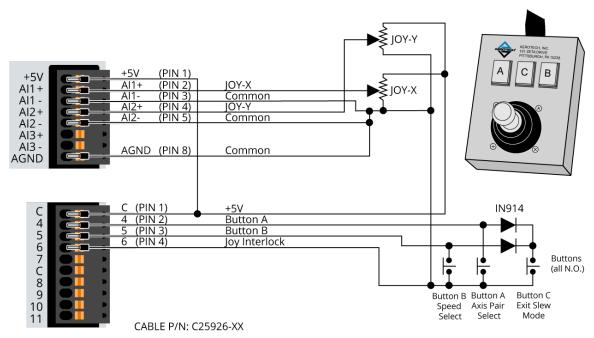


Figure 4-2: Two Axis Joystick Interface (to the I/O board)

4.2. Handwheel Interface

A handwheel can be used to manually control axis position. The handwheel must provide 5V differential quadrature signals to the XC6e

IMPORTANT: You can find instructions on how to enable the handwheel in the Help file.

Connect a handwheel to the Aux I/O as shown in Figure 4-3 or Figure 4-4.

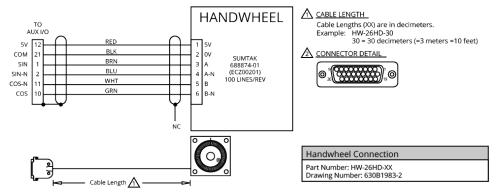


Figure 4-3: Handwheel Interconnection to Aux I/O Connector

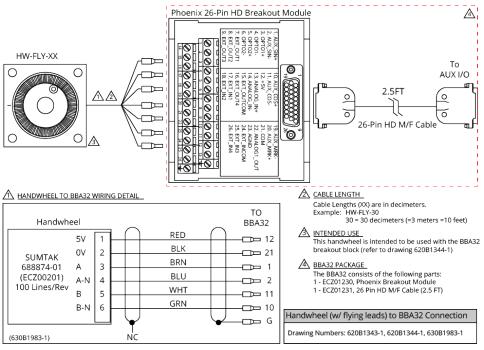


Figure 4-4: Handwheel Interconnection to the Aux I/O through a BBA32 Module

Chapter 5: Maintenance

IMPORTANT: For your own safety and for the safety of the equipment:

- Do not remove the cover of the XC6e
- Do not attempt to access the internal components.

A fuse that needs to be replaced indicates that there is a more serious problem with the system or setup. Contact Global Technical Support for assistance.

DANGER: If you must remove the covers and access any internal components be aware of the risk of electric shock.

- 1. Disconnect the Mains power connection.
- 2. Wait at least ten (10) minutes after removing the power supply before doing maintenance or an inspection. Otherwise, there is the danger of electric shock.
- 3. All tests must be done by an approved service technician. Voltages inside the controller and at the input and output power connections can kill you.

Table 5-1: LED Description

LED	Color	Description		
PWR	GREEN	The light will illuminate and remain illuminated while power is applied.		
EN/FLT	GREEN	The axis is Enabled.		
	RED	The axis is in a Fault Condition.		
	GREEN/RED (alternates)	The axis is Enabled in a Fault Condition.		
		or		
		The light is configured to blink for setup.		

Table 5-2: Troubleshooting

Symptom	Possible Cause and Solution
	Make sure the power LED is illuminated (this indicates that power is present).
No Communication	Make sure that all communication cables (HyperWire, for example) are fully inserted in their ports.

5.1. Preventative Maintenance

Do an inspection of the XC6e and the external wiring one time each month. It might be necessary to do more frequent inspections based on:

- The operating conditions of the system.
- How you use the system.

Table 5-3: Preventative Maintenance

Check	Action to be Taken
Examine the chassis for hardware and parts that are damaged or loose. It is not necessary to do an internal inspection unless you think internal damage occurred.	Repair all damaged parts.
Do an inspection of the cooling vents.	Remove all material that collected in the vents.
Examine the work area to make sure there are no fluids and no electrically conductive materials.	Do not let fluids and electrically conductive material go into the XC6e.
Examine all cables and connections to make sure they are correct.	Make sure that all connections are correctly attached and not loose. Replace cables that are worn. Replace all broken connectors.

Cleaning

DANGER: Before you clean the XC6e, disconnect the electrical power from the drive.

Use a clean, dry, soft cloth to clean the chassis of the XC6e. If necessary, you can use a cloth that is moist with water or isopropyl alcohol. If you use a moist cloth, make sure that moisture does not go into the XC6e. Also make sure that it does not go onto the outer connectors and components.

Do not use fluids and sprays to clean the XC6e because they can easily go into the chassis or onto the outer connectors and components. If a cleaning solution goes into the XC6e, internal contamination can cause corrosion and electrical short circuits.

Do not clean the labels with a cleaning solution because it might remove the label information.

5.2. Fuse Specifications

WARNING: Replace fuses only with the same type and value.

Table 5-4: Control Board Fuse Specifications

			Aerotech	
Fuse	Description	Size	P/N	Third Party P/N
F100	Control Power at Line Input (L)	2 A S.B.	EIF01044	Littelfuse 0877002.MXEP

This page intentionally left blank.

Appendix A: Warranty and Field Service

Aerotech, Inc. warrants its products to be free from harmful defects caused by faulty materials or poor workmanship for a minimum period of one year from date of shipment from Aerotech. Aerotech's liability is limited to replacing, repairing or issuing credit, at its option, for any products that are returned by the original purchaser during the warranty period. Aerotech makes no warranty that its products are fit for the use or purpose to which they may be put by the buyer, whether or not such use or purpose has been disclosed to Aerotech in specifications or drawings previously or subsequently provided, or whether or not Aerotech's products are specifically designed and/or manufactured for buyer's use or purpose. Aerotech's liability on any claim for loss or damage arising out of the sale, resale, or use of any of its products shall in no event exceed the selling price of the unit.

THE EXPRESS WARRANTY SET FORTH HEREIN IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL AEROTECH BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES.

Return Products Procedure

Claims for shipment damage (evident or concealed) must be filed with the carrier by the buyer. Aerotech must be notified within thirty (30) days of shipment of incorrect material. No product may be returned, whether in warranty or out of warranty, without first obtaining approval from Aerotech. No credit will be given nor repairs made for products returned without such approval. A "Return Materials Authorization (RMA)" number must accompany any returned product(s). The RMA number may be obtained by calling an Aerotech service center or by submitting the appropriate request available on our website (www.aerotech.com). Products must be returned, prepaid, to an Aerotech service center (no C.O.D. or Collect Freight accepted). The status of any product returned later than thirty (30) days after the issuance of a return authorization number will be subject to review.

Visit Global Technical Support Portal for the location of your nearest Aerotech Service center.

Returned Product Warranty Determination

After Aerotech's examination, warranty or out-of-warranty status will be determined. If upon Aerotech's examination a warranted defect exists, then the product(s) will be repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an expedited method of return, the product(s) will be shipped collect. Warranty repairs do not extend the original warranty period.

Fixed Fee Repairs - Products having fixed-fee pricing will require a valid purchase order or credit card particulars before any service work can begin.

All Other Repairs - After Aerotech's evaluation, the buyer shall be notified of the repair cost. At such time the buyer must issue a valid purchase order to cover the cost of the repair and freight, or authorize the product(s) to be shipped back as is, at the buyer's expense. Failure to obtain a purchase order number or approval within thirty (30) days of notification will result in the product(s) being returned as is, at the buyer's expense.

Repair work is warranted for ninety (90) days from date of shipment. Replacement components are warranted for one year from date of shipment.

Rush Service

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-warranty status, the buyer must issue a valid purchase order to cover the added rush service cost. Rush service is subject to Aerotech's approval.

On-site Warranty Repair

If an Aerotech product cannot be made functional by telephone assistance or by sending and having the customer install replacement parts, and cannot be returned to the Aerotech service center for repair, and if Aerotech determines the problem could be warranty-related, then the following policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs. For warranty field repairs, the customer will not be charged for the cost of labor and material. If service is rendered at times other than normal work periods, then special rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the terms and conditions stated in the following "On-Site Non-Warranty Repair" section apply.

On-site Non-Warranty Repair

If any Aerotech product cannot be made functional by telephone assistance or purchased replacement parts, and cannot be returned to the Aerotech service center for repair, then the following field service policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs and the prevailing labor cost, including travel time, necessary to complete the repair.

Service Locations

http://www.aerotech.com/contact-sales.aspx?mapState=showMap

USA. CANADA. MEXICO	USA.	CAI	NΑ	DA.	M	EX	ICC
---------------------	------	-----	----	-----	---	----	-----

Aerotech, Inc. Global Headquarters

TAIWAN

Aerotech Taiwan Full-Service Subsidiary

CHINA

Aerotech China Full-Service Subsidiary

UNITED KINGDOM

Aerotech United Kingdom Full-Service Subsidiary

GERMANY

Aerotech Germany Full-Service Subsidiary

Appendix B: Revision History

Revision	Description
1.00	New Manual

This page intentionally left blank.

Index		Analog Output 0 Schematic (Aux I/O Connector)	68
		Analog Output 0 Specifications (Aux I/O Connector)	68
-		Analog Output Connector [-EB1] Mating Connector Par Numbers	
-EB1		Analog Output Connector Pinout [-EB1]	87
Analog Inputs	88	Analog Output Pins (Aux I/O Connector)	68
Analog Outputs	87	Analog Output Specifications [-EB1]	87
Digital Inputs	84	Analog Output Typical Connection [-EB1]	87
Digital Outputs	80	Analog Outputs [-EB1]	87
I/O Option Board	79	Aux I/O Connector	
Position Synchronized Output (PSO) Interface	89	Analog Input 0	69
-MX2	39	Analog Output 0	68
-MX3	39,59	Auxiliary Encoder Inputs	56
1117.5	33,33	Digital Inputs	66
2		Digital Outputs	63
		High-Speed User Inputs	67
2006/42/EC	9	Position Synchronized Output	61
2014/30/EU	9	PSO	61
2014/35/EU	9	Aux I/O Connector Mating Connector Part Numbers	55
		Auxiliary Encoder Inputs (Aux I/O Connector)	56
Α		Auxiliary I/O Connector	55
Absolute Encoder (Auxiliary I/O Connector)	58	Analog Encoder	59
Absolute Encoder (Feedback Connector)	38	Sine Wave Encoder	59
Absolute Encoder Schematic (Auxiliary I/O Connector)	58	Auxiliary I/O Connector Pinout	55
Absolute Encoder Schematic (Feedback Connector)	38	Auxiliary I/O Pins (Aux I/O Connector)	56
AC line filter	29		
Altitude	24	В	
Ambient Temperature	24	BiSS absolute encoder	38,58
Analog Encoder (Auxiliary I/O Connector)	59	Brake Connected to the Feedback Connector	48
Analog Encoder (Feedback Connector)	39	Brake Control Relay Specifications	48
Analog Encoder Phasing Reference Diagram	39,59	Brake Output Connector Pinout	70
Analog Encoder Schematic (Auxiliary I/O Connector)	60	Brake Output Pins on the Feedback Connector	48
Analog Encoder Schematic (Feedback Connector)	40	Brake Outputs (Feedback Connector)	48
Analog Encoder Specifications (Auxiliary I/O Connecto	r) 59	Brake Power Supply Connector	70
Analog Encoder Specifications (Feedback Connector)	39	Brake Power Supply Connector Mating Connector Part	
Analog Input 0 on the Aux I/O Connector	69	Numbers	70
Analog Input 0 Schematic (Aux I/O Connector)	69	Brushless Motor Configuration (Motor Power Output	
Analog Input 0 Specifications (Aux I/O Connector)	69	Connector)	32
Analog Input Connector [-EB1] Mating Connector Part Numbers	88	Brushless Motor Connections (Motor Power Output Connector)	32
Analog Input Connector Pinout [-EB1]	88	Brushless Motor Phasing Goal	34
Analog Input Pins (Aux I/O Connector)	69	Brushless Motor Phasing Oscilloscope Example	34
Analog Input Typical Connection [-EB1]	88	Brushless Motor Powered Motor Phasing	33
Analog Inputs [-EB1]	88	Brushless Motor Unpowered Motor and Feedback	2 /
Analog Output 0 on the Aux I/O Connector	68	Phasing	34

Bus Link Connector		Digital Inputs Connected to a Current Sourcing Device	[-
Mating Connector Part Numbers	72	EB1]	86
Pinout	72	Digital Inputs Connected to Current Sinking Devices (A I/O Connector)	ux 66
С		Digital Inputs Connected to Current Sourcing Devices (Aux I/O Connector)	66
Cable Wires		Digital Inputs Schematic [-EB1]	85
Brushless Motors	32	Digital Output 1 Connector [-EB1] Mating Connector Pa	
Cables		Numbers	81
HyperWire	71	Digital Output 1 Connector Pinout [-EB1]	81
Sync Port	75	Digital Output 2 Connector [-EB1] Mating Connector Pa Numbers	art 81
Cables and Accessories	91	Digital Output 2 Connector Pinout [-EB1]	81
cables, examining	96	Digital Output Pins (Aux I/O Connector)	63
Check for fluids or electrically conductive material		Digital Output Schematic (Aux I/O Connector)	64
exposure	96	Digital Output Specifications (Aux I/O Connector)	63
Cleaning	96	Digital Output Specifications [-EB1]	80
Commands		Digital Outputs (Aux I/O Connector)	63
Sync	75	Digital Outputs [-EB1]	80
connections, examining	96	Digital Outputs Connected in Current Sinking Mode (A	
Continuous Output Current specifications	18-19	I/O Connector)	ux 65
Control Board Fuse Specifications	97	Digital Outputs Connected in Current Sinking Mode [-E	:B1]83
Control Supply Connections	28	Digital Outputs Connected in Current Sourcing Mode (
Control Supply Connector	28	I/O Connector)	65
Mating Connector Part Numbers	28	Digital Outputs Connected in Current Sourcing Mode [
Wiring Specifications	28	EB1]	83
Control Supply specifications	18-19	Digital Outputs Schematic [-EB1]	82
cooling vents, inspecting	96	Dimensions	22
Customer order number	27	Dimensions (without -EB1)	22
		Dimensions with -EB1	23
D		Drawing number	27
Declaration of Conformity	9	Drive and Software Compatibility	25
Differential Analog Input Specifications [-EB1]	88		
Digital Input 1 Connector [-EB1] Mating Connector Pa		E	
Numbers	84	Electrical Specifications	18
Digital Input 1 Connector Pinout [-EB1]	84	Electromagnetic Compatibility (EMC)	9
Digital Input 2 Connector [-EB1] Mating Connector Pa		EMC/CE Compliance	30
Numbers	85	Enclosure	21
Digital Input 2 Connector Pinout [-EB1]	85	encoder	
Digital Input Pins on the Aux I/O Connector	66	absolute	38,58
Digital Input Specifications (Aux I/O Connector)	66	Encoder and Hall Signal Diagnostics	33
Digital Input Specifications [-EB1]	84	Encoder Fault Input (Feedback Connector)	44
Digital Inputs (Aux I/O Connector)	66	Encoder Fault Input Pin on the Feedback Connector	44
Digital Inputs [-EB1]	84	Encoder Input (Feedback Connector)	36
Digital Inputs Connected to a Current Sinking Device		Encoder Input Pins on the Feedback Connector	36
EB1]	86	Encoder Phasing	41

Encoder Phasing Reference Diagram	41	Analog Encoder Schematic (Auxiliary I/O Connector)	60
End of Travel Limit Input (Feedback Connector)	45	Analog Encoder Schematic (Feedback Connector)	40
End of Travel Limit Input Connections	46	Analog Input 0 Schematic (Aux I/O Connector)	69
End of Travel Limit Input Diagnostic Display	47	Analog Input Typical Connection [-EB1]	88
End of Travel Limit Input Pins on the Feedback Conr	nector 45	Analog Output 0 Schematic (Aux I/O Connector)	68
End of Travel Limit Input Schematic	46	Analog Output Typical Connection [-EB1]	87
End of Travel Limit Phasing	47	Brake Connected to the Feedback Connector	48
EnDat absolute encoder	38,58	Brushless Motor Configuration (Motor Power Output	
Environmental Specifications	24	Connector)	32
EU 2015/863	9	Control Supply Connections	28
examining parts		Digital Inputs Connected to a Current Sinking Device [
cables	96	EB1]	86
connections	96	Digital Inputs Connected to a Current Sourcing Device [-EB1]	86
examining, dangerous fluids	96	Digital Inputs Connected to Current Sinking Devices	
examining, dangerous material	96	(Aux I/O Connector)	66
Extenral Shunt Connector		Digital Inputs Connected to Current Sourcing Devices	
Pinout	72	(Aux I/O Connector)	66
External Shunt Connections	72	Digital Inputs Schematic [-EB1]	85
External Shunt Connector		Digital Output Schematic (Aux I/O Connector)	64
Mating Connector Part Numbers	72	Digital Outputs Connected in Current Sinking Mode (Aux I/O Connector)	65
F		Digital Outputs Connected in Current Sourcing Mode (Aux I/O Connector)	65
Feature Summary	16	Digital Outputs Schematic [-EB1]	82
Feedback Connector	35	Dimensions (without -EB1)	22
Absolute Encoder	38,58	Dimensions with -EB1	23
Analog Encoder	39	End of Travel Limit Input Connections	46
Brake Outputs	48	End of Travel Limit Input Diagnostic Display	47
Encoder Fault Input	44	End of Travel Limit Input Schematic	46
Encoder Input	36	Hall-Effect Inputs Schematic	42
End of Travel Limit Input	45	High-Speed Inputs	67
Hall-Effect Inputs	42	Home Limit Input Connections	46
Home Limit Input	45	Home Limit Input Diagnostic Display	47
Pinout	35	Home Limit Input Schematic	46
Primary Encoder Input	36	Isolated Output Current Sinks Schematic (PSO)	90
RS-422 Line Driver Encoder	37,57	Isolated Output Current Sources Schematic (PSO)	90
Sine Wave Encoder	39	Motor Supply Connections	29
Square Wave Encoder	37,57	Outputs Connected in Current Sinking Mode [-IO]	83
Thermistor Input	43	Outputs Connected in Current Sourcing Mode [-EB1]	83
Travel Limit Input	45	Positive Motor Direction	33
Feedback Monitoring	33	PSO Interface (Aux I/O Connector)	62
Figure	-	PSO Isolated Output Sinks Current	90
-EB1 I/O Option Board Connectors	79	PSO Isolated Output Sources Current	90
Absolute Encoder Schematic (Auxiliary I/O Conn	_	PSO TTL Outputs Schematic	90
Absolute Encoder Schematic (Feedback Connec		·	

Sine Wave Encoder Schematic (Auxiliary I/O		Installation and Configuration	27
Connector)	60	Installation Connection Overview	13
Sine Wave Encoder Schematic (Feedback Connector)	40	Installation Overview	13
Square Wave Encoder Inputs Schematic (Aux I/O	E 7	Internal Shunt Connections	72
Connector)	57	Internal Shunt Connector	
Square Wave Encoder Schematic (Feedback Connector)	37	Mating Connector Part Numbers	72
STO Timing	54	Pinout	72
Thermistor Input Schematic	43	Internal Shunt Specifications	72
TTL Outputs Schematic (PSO)	90	Introduction	15
Typical STO Configuration	50	IP54 Compliant	21
fluids, dangerous	96	Isolated Output Current Sinks Schematic (PSO)	90
Functional Diagram	17	Isolated Output Current Sources Schematic (PSO)	90
Fuse Specifications	97	Isolation	18-19
Control Supply at L	97		
External Shunt (-SX1)	97	J	
Motor Supply at AC1	97	Joystick Interface	92
н		L	
Hall-Effect Feedback Pins on the Feedback Connector	42	Laser Firing	61
Hall-Effect Inputs (Feedback Connector)	42	Laser Filling	01
Hall-Effect Inputs Schematic	42	M	
Handwheel Interconnection (to Aux I/O through a BBA32	72	IVI	
Module)	94	Maintenance	95
Handwheel Interconnection to the Aux I/O Connector	94	material, electrically conductive	96
Handwheel Interface	94	Mating Connector	
High-Speed Input Pins on the Aux I/O Connector	67	Analog Output Connector [-EB1]	87
High-Speed Input Specifications	67	Mating Connector P/N	
High-Speed Inputs	67	Analog Input Connector [-EB1]	88
High-Speed User Inputs (Aux I/O Connector)	67	Aux I/O Connector	55
Home Limit Input (Feedback Connector)	45	Brake Power Supply Connector	70
Home Limit Input Connections	46	Bus Link Connector	72
Home Limit Input Diagnostic Display	47	Control Supply Connector	28
Home Limit Input Pins on the Feedback Connector	45	Digital Input 1 Connector [-EB1]	84
Home Limit Input Schematic	46	Digital Input 2 Connector [-EB1]	85
Humidity	24	Digital Output 1 Connector [-EB1]	81
HyperWire	71	Digital Output 2 Connector [-EB1]	81
Cable Part Numbers	71	External Shunt Connector	72
Card Part Number	71	Feedback Connector	35
		Internal Shunt Connector	72
I		Motor Power Output Connector	31
l/O Option Board [-EB1]	79	Motor Supply Connector	29
Input Power Connections	28	PSO Connector [-EB1]	89
inspecting cooling vents	96	Shunt Connector	72
Inspecting cooling verits Inspection	96	STO Connector	49
inspection	20		

Minimizing Conducted, Radiated, and System Noise for EMC/CE Compliance Solitar S	Mechanical Specifications	21	Digital Input 1 Connector [-EB1]	84
Modes of Operation 18-19 Digital Output 1 Connector EB1 81 Motor Connector	Minimizing Conducted, Radiated, and System Nois	se for	Digital Input 2 Connector [-EB1]	85
Motor Connector Digital Output Pins (Aux I/O Connector) Section Systems Sect	EMC/CE Compliance	30	Digital Input Pins (Aux I/O Connector)	66
Mating Connector Part Numbers 35 Encoder Fault Input Pin (Feedback Connector) 44 Motor Function Relative to STO Input State 53 Encoder Input (Feedback Connector) 36 Motor Power Output Connections 31 End of Travel Limit Input Pins (Feedback Connector) 45 Encoder Input (Feedback Connector) 45 Encoder Input (Feedback Connector) 45 Encoder Input (Feedback Connector) 46 Encoder Input (Feedback Connector) 47 Mating Connector Part Numbers 31 Feedback Connector 47 Hall-Effect Feedback Pins (Feedback Connector) 46 Motor Supply Connector 29 High-Speed Input Pins (Feedback Connector) 66 Motor Supply Connector 29 Home Limit Input Pins (Feedback Connector) 67 Mating Specifications 29 Internal Shunt Connector 77 Motor Supply Connector Fuse Specifications 29 Internal Shunt Connector 77 Motor Supply Specifications 29 Internal Shunt Connector 31 Motor Supply Specifications 29 Primary Encoder Input (Feedback Connector) 32 Motor Supply specifications 29 Primary Encoder Input (Seedback Connector) 33 Motor Supply specifications 18-19 PSO Interface Connector (-EB1) 89 PSO Interface Connector 97 Motor Power Output Connector 97 Motor Supply Specifications 18-19 PSO Interface Connector 98 PSO Interface Connector 99 PSO Specifications	Modes of Operation	18-19	Digital Output 1 Connector [-EB1]	81
Motor Function Relative to STO Input State Motor Power Output Connector Brushless Motor Connections Brig Connector Part Numbers	Motor Connector		Digital Output Pins (Aux I/O Connector)	63
Motor Function Relative to STO Input State 53 Encoder Input (Feedback Connector) 36 Motor Power Output Connection 31 End of Travel Limit Input Pins (Feedback Connector) 45 Brushless Motor Connections 32 External Shunt Connector 77 Mating Connector Part Numbers 31 Feedback Connector 47 Motor Supply Connector 29 High-Speed Input Pins (Aux I/O Connector) 48 Motor Supply Connector Part Numbers 29 Home Limit Input Pins (Feedback Connector) 47 Mating Specifications 29 Internal Shunt Connector 72 Wiring Specifications 29 Primary Encoder Inputs (Feedback Connector) 36 Motor Supply Specifications 18-19 PSO Interface Connector (FeB1) 36 Mounting and Cooling 21 Shunt Connector 72 Mounting Hardware 21 Shunt Connector 72 Mounting Orientation 21 Shunt Connector 72 Operation 24 Position Feedback in the Diagnostic Display 41 Output Voltage specifications 18-19 P	Mating Connector Part Numbers	35	Encoder Fault Input Pin (Feedback Connector)	44
Motor Power Output Connector 31 End of Travel Limit Input Pins (Feedback Connector) 45	Motor Function Relative to STO Input State	53	·	36
Brushless Motor Connections Mating Connector Part Numbers Pinout Motor Supply Connections Motor Supply Connector Motor Supply Connector Motor Supply Connector Mating Connector Part Numbers Motor Supply Connector Motor Supply Connector Mating Connector Motor Supply Connector Mating Connector Part Numbers Motor Supply Connector Mating Connector Part Numbers Motor Supply Connector Fuse Specifications Motor Supply Connector Fuse Specifications Motor Supply Specifications Motor Supply specifications Motor Supply Specifications Motor Supply Specifications Mounting and Cooling Mounting and Cooling Mounting Hardware Mounting Orientation O O Pollution O Pollution O Pollution O Position Synchronized Output (Aux I/O Connector) Fosition Synchronized Output (PSO) Interface [-EB1] Position Synchronized Output (PSO) Interface [-EB1] Position Synchronized Output (PSO) Interface [-EB1] Position Synchronized Output (PSO) Interface [-EB1] Power Amplifier Bandwidth specifications Power Amplifier Bandwidth specifications Power Amplifier Bandwidth specifications Primary Encoder Input Pins on the Feedback Connector) Primary Encoder Input Pins on the Feedback Connector Manalog Input Connector [-EB1] Analog Input Connector [-EB1] Analog Input Connector [-EB1] Analog Output Pins (Aux I/O Connector) Applications (Aux I/O Connector) PSO Specifications (Aux I/O Connector) PSO S	Motor Power Output Connector	31	•	45
Mating Connector Part Numbers 31 Feedback Connector 36 Pinout 31 Hall-Effect Feedback Pins (Feedback Connector) 42 Motor Supply Connector 29 High-Speed Input Pins (Aux I/O Connector) 42 Motor Supply Connector Part Numbers 29 Internal Shunt Connector 72 Wiring Specifications 29 Motor Power Output Connector 33 Motor Supply Specifications 18-19 PSO Interface Connector (FeB1) 88 Mounting and Cooling 21 PSO Pins (Aux I/O Connector) 66 Mounting Orientation 21 STO Connector 75 Mounting Orientation 21 STO Connector 42 Mounting Orientation 24 Position Feedback in the Diagnostic Display 44 Otperation 24 Position Feedback in the Diagnostic Display 44 Output Voltage specifications 18-19 Position Synchronized Output (Aux I/O Connector) 61 Overview 15 Power Requirements 20 PC Configuration and Operation Information 77 Preventative Maintenance	Brushless Motor Connections	32	·	
Pinout 31 Hall-Effect Feedback Pins (Feedback Connector) 42 Motor Supply Connector 29 High-Speed Input Pins (Aux I/O Connector) 64 Motor Supply Connector 29 Home Limit Input Pins (Feedback Connector) 65 Mating Connector Part Numbers 29 Internal Shunt Connector 75 Wiring Specifications 29 Motor Power Output Connector 37 Motor Supply Connector Fuse Specifications 29 Primary Encoder Inputs (Feedback Connector) 36 Motor Supply Specifications 18-19 PSO Interface Connector [-EB1] 88 Mounting and Cooling 21 PSO Pins (Aux I/O Connector) 66 Mounting Hardware 21 Shunt Connector 77 Mounting Orientation 21 STO Connector 77 Mounting Orientation 21 STO Connector 77 Mounting Orientation 24 Position Feedback in the Diagnostic Display 44 Output Voltage specifications 18-19 Position Synchronized Output (Aux I/O Connector) 61 Overview 15 Position Synchronized Output (Aux I/O Connector) 61 Overview 15 Position Synchronized Output (PSO) Interface [-EB1] 88 Positive Motor Direction 98 Power Amplifier Bandwidth specifications 18-19 Power Amplifier Bandwidth specifications 18-19 Primary Encoder Input Pin (Feedback Connector) 97 Peak Output Current specifications 18-19 Protective Features 97 Primary Encoder Input (Feedback Connector) 97 Peak Output Current specifications 18-19 Power Requirements 97 Protective Features 97 Primary Encoder Input (Feedback Connector) 97 Primary Encoder Input Pins on the Feedback Connector 97 Primary Encoder Input Pins on the Feedback Connector 97 Primary Encoder Input Pins (Aux I/O Connector) 97 Primary Encoder Input (Feedback Connector) 97 Primary Encode	Mating Connector Part Numbers	31	Feedback Connector	
Motor Supply Connectors 29 High-Speed Input Pins (Aux I/O Connector) 66 Motor Supply Connector 29 Home Limit Input Pins (Feedback Connector) 45 Mating Connector Part Numbers 29 Internal Shunt Connector 77 Wiring Specifications 29 Motor Power Output Connector 37 Motor Supply Connector Fuse Specifications 29 Primary Encoder Inputs (Feedback Connector) 37 Mounting and Cooling 21 PSO Pins (Aux I/O Connector) 67 Mounting Hardware 21 Shunt Connector 77 Mounting Orientation 21 Shunt Connector 77 Mounting Orientation 21 Shunt Connector 78 O Pollution 21 Shunt Connector 78 O Pollution 22 Position Feedback in the Diagnostic Display 44 Output Voltage specifications 18-19 Position Synchronized Output (Aux I/O Connector) 38 Positive Motor Direction 38 Power Amplifier Bandwidth specifications 18-19 Power Amplifier Bandwidth specifications 18-19 Power Requirements 20 Power Amplifier Bandwidth specifications 18-19 Power Requirements 20 Primary Encoder Input (Feedback Connector) 36 Primary Encoder Input Pins on the Feedback Connector) 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 37 Primary Encoder Input Pins on the Feedback Connector 37 Protective Features 18-15 PSO Analog Output Pins (Aux I/O Connector) 69 Analog Output Connector [-EB1] 87 Analog Input Pins (Aux I/O Connector) 68 Analog Output Connector [-EB1] 87 Analog Output Pins (Aux I/O Connector) 68 Analog Output Connector [-EB1] 87 Analog Output Pins (Aux I/O Connector) 68 Auxiliary I/O Pins (Aux I/O Connector) 70 Brake Output Connector 70 Brake Output Connector 70 Brake Output Pins (Feedback Connector) 70 Brake Output Pins (Feedbac	Pinout	31		
Motor Supply Connector Mating Connector Part Numbers 29 Internal Shunt Connector 77 Motor Supply Connector Fuse Specifications 29 Motor Power Output Connector 30 Motor Supply Specifications 30 Motor Supply Specifications 318-19 Mounting and Cooling 318-19 Mounting Hardware 31 Shunt Connector 32 Shunt Connector 33 Mounting Orientation 31 STO Connector 32 STO Connector 33 STO Connector 34 Position Feedback Connector) 36 Mounting Orientation 31 STO Connector 32 STO Connector 33 STO Connector 34 Position Feedback in the Diagnostic Display 34 Position Synchronized Output (Aux I/O Connector) 35 Positive Motor Direction 36 Power Amplifier Bandwidth specifications 37 Power Requirements 38 Power Requirements 39 Power Requirements 30 Power Requirements 30 Power Requirements 31 Proventative Maintenance 32 Primary Encoder Input Pins on the Feedback Connector 33 Unpowered Brushless Motor 34 Isolated Output Sinks Current Schematic 35 Pool Interface Connector 36 Pool Interface Connector 37 Pool Interface Connector 38 Pool Interface Connector 39 Pool Interface Connector 30 Pool Interface Conne	Motor Supply Connections	29		
Mating Connector Part Numbers Wiring Specifications 29 Motor Power Output Connector 31 Motor Supply Connector Fuse Specifications 31 Mounting and Cooling 321 PSO Pins (Aux I/O Connector) 325 Mounting and Cooling 321 PSO Pins (Aux I/O Connector) 326 Mounting Hardware 327 Shunt Connector 327 Mounting Orientation 328 Mounting Orientation 329 Primary Encoder Inputs (Feedback Connector) 329 Mounting and Cooling 321 PSO Pins (Aux I/O Connector) 320 Mounting Hardware 321 Shunt Connector 321 Shunt Connector 322 Mounting Orientation 323 Mounting Orientation 324 Position Feedback in the Diagnostic Display 326 Pollution 327 Position Feedback in the Diagnostic Display 328 Position Synchronized Output (Aux I/O Connector) 339 Positive Motor Direction 340 Positive Motor Direction 341 Power Amplifier Bandwidth specifications 341 Power Amplifier Bandwidth specifications 342 Power Amplifier Bandwidth specifications 343 Power Requirements 344 Protective Maintenance 345 Preventative Maintenance 346 Primary Encoder Input (Feedback Connector) 347 Preventative Maintenance 348 Primary Encoder Input Pins on the Feedback Connector 349 Primary Encoder Input Pins on the Feedback Connector 340 Primary Encoder Input Pins on the Feedback Connector 340 Primary Encoder Input Pins on the Feedback Connector 341 Protective Features 341 Protective Features 344 Primary Encoder Input Pins on the Feedback Connector 345 PSO (Aux I/O Connector) 346 PSO (Aux I/O Connector) 347 PSO (Aux I/O Connector) 348 PSO (Aux I/O Connector) 349 PSO Output Sources 340 PSO Output Sources 341 PSO Output Sources 341 PSO Output Sources 345 PSO Output Sources 346 PSO Output Sources 347 PSO Output Sources 348 PSO Output Sources 349 PSO Specifications (Aux I/O Connector) 340 PSO Specifications (Aux I/O Connector) 341 PSO Specifications (Aux I/O Connector) 341 PSO Specifications (Aux I/O Connector) 342 PSO Specifications (Aux I/O Connector) 343 PSO Specifications (Aux I/O Connector) 344 PSO Specifications (Aux I/O Connector) 345 PSO Specifications (Aux I/O Connector) 347 PSO	Motor Supply Connector	29		
Motor Supply Connector Fuse Specifications 29	Mating Connector Part Numbers	29	·	
Motor Supply Connector Fuse Specifications Motor Supply specifications Motor Supply specifications 18-19 Mounting and Cooling Mounting Hardware Mounting Hardware Mounting Orientation O Pollution O Pollution O Position Feedback in the Diagnostic Display 41 Output Voltage specifications 18-19 Position Synchronized Output (Aux I/O Connector) 63 Power Amplifier Bandwidth specifications 18-19 Power Requirements Power Requirements Power Requirements Power Requirements Primary Encoder Input (Feedback Connector) 43 Primary Encoder Input (Feedback Connector) 44 Position Synchronized Output (Aux I/O Connector) 45 Power Requirements 47 Primary Encoder Input (Feedback Connector) 48 PSO (Aux I/O Connector) 49 PSO Interface (Aux I/O Connector) 40 PSO Interface Connector Input (Feedback Connector) 40 PSO Specifications 40 Primary Encoder Inputs (Feedback Connector) 40 PSO Specifications 40 PSO Specifications 41 PSO Output Sources 42 PSO Specifications 43 PSO Specifications 44 PSO Specifications 45 PSO Specifications 46 PSO Specifications (Aux I/O Connector) 46 PSO Specifications (Aux I/O Connector) 47 PSO Specifications (Aux I/O Connector) 48 PSO Sp	Wiring Specifications	29		
Mounting and Cooling Mounting Hardware Mounting Hardware Mounting Hardware Mounting Orientation O Pollution Position Feedback Connector Position Synchronized Output (Aux I/O Connector) O Pollution Position Synchronized Output (Aux I/O Connector) Position Synchronized Output (Aux I/O Connector) Position Synchronized Output (PSO) Interface [-EB1] Power Amplifier Bandwidth specifications Peak Output Current specifications Preventative Maintenance Preventative Maintenance Primary Encoder Input (Feedback Connector) Primary Encoder Input (Feedbac	Motor Supply Connector Fuse Specifications	29	•	
Mounting and Cooling Mounting Hardware Mounting Hardware Mounting Orientation 21 Shunt Connector Thermistor Input Pin (Feedback Connector) 45 Pollution 26 Pollution 27 Position Synchronized Output (Aux I/O Connector) 48 Position Synchronized Output (Aux I/O Connector) 49 Position Synchronized Output (PSO) Interface [-EB1] 40 Power Amplifier Bandwidth specifications 40 Power Amplifier Bandwidth specifications 41 Power Amplifier Bandwidth specifications 41 Power Amplifier Bandwidth specifications 42 Preventative Maintenance 43 Preventative Maintenance 44 Primary Encoder Input (Feedback Connector) 45 Preventative Maintenance 46 Primary Encoder Input (Feedback Connector) 47 Preventative Maintenance 48 Primary Encoder Input (Feedback Connector) 49 Primary Encoder Input (Feedback Connector) 40 Isolated Output Sinks Current Schematic 41 Sisolated Output Sources Current Schematic 42 PSO (Aux I/O Connector) 43 Isolated Output Sources Current Schematic 44 PSO (Aux I/O Connector) 45 PSO (Aux I/O Connector) 46 PSO (Aux I/O Connector) 47 PSO Interface (Aux I/O Connector) 48 PSO (Poerfications (Aux I/O Connector) 48 PSO Specifications (Aux I/O Connector)	Motor Supply specifications	18-19		
Mounting Hardware Mounting Orientation 21 Shunt Connector Thermistor Input Pin (Feedback Connector) 45 Thermistor Input Pin (Feedback Connector) 46 Polittion 27 Polittion 28 Position Feedback in the Diagnostic Display 47 Output Voltage specifications 18-19 Position Synchronized Output (Aux I/O Connector) 67 Position Synchronized Output (PSO) Interface [-EB1] 87 Power Amplifier Bandwidth specifications 18-19 Power Requirements 20 Preventative Maintenance Preventative Maintenance Primary Encoder Input (Feedback Connector) 32 Primary Encoder Input (Feedback Connector) 33 Primary Encoder Input Pins on the Feedback Connector 34 Provered Brushless Motor 33 Unpowered Brushless Motor/Feedback Pinout Analog Input Connector [-EB1] Analog Input Connector [-EB1] Analog Output Pins (Aux I/O Connector) Auxiliary I/O Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) 42 Position Freedback in the Diagnostic Display Position Synchronized Output (Aux I/O Connector) Position Synchronized Output (Aux I/O Connector) Position Synchronized Output (Peedback Connector) Power Amplifier Bandwidth specifications Prover Amplifier Bandwidth specifications Position Synchronized Output (Peedback Connector) Power Amplifier Bandwidth specifications Prover Amplifier Bandwidth specifications Prover Amplifier Bandwidth specifications Position Synchronized Output (Peedback Connector) Position Synchronized Output Pins (Peedback Connector) Position Synchronized Output Pins (Peedback Connector	Mounting and Cooling	21		
Mounting Orientation 21 STO Connector 44 Thermistor Input Pin (Feedback Connector) 45 Pollution 24 Position Feedback in the Diagnostic Display 47 Output Voltage specifications 18-19 Position Synchronized Output (Aux I/O Connector) 61 Overview 15 Position Synchronized Output (PSO) Interface [-EB1] 88 Positive Motor Direction 32 Power Amplifier Bandwidth specifications 18-19 Peak Output Current specifications 18-19 Peak Output Current specifications 18-19 Phasing End of Travel Limits 47 Powered Brushless Motor 33 Unpowered Brushless Motor/Feedback 34 Pinout 4 Analog Input Connector [-EB1] 88 Analog Input Connector [-EB1] 87 Analog Output Pins (Aux I/O Connector) 69 Analog Output Pins (Aux I/O Connector) 55 Auxiliary I/O Pins (Aux I/O Connector) 56 Brake Output Pins (Aux I/O Connector) 70 Brake Output Pins (Feedback Con	Mounting Hardware	21		
Thermistor Input Pin (Feedback Connector) Pollution 24 Position Feedback in the Diagnostic Display 41 Output Voltage specifications 18-19 Position Synchronized Output (Aux I/O Connector) 61 Overview 15 Position Synchronized Output (PSO) Interface [-EB1] 85 Positive Motor Direction 32 Power Amplifier Bandwidth specifications 18-19 Power Requirements Power Requirements Power Requirements Power Requirements Primary Encoder Input (Feedback Connector) Primary Encoder Input Pins on the Feedback Connector) Primary Encoder Input Pins on the Feedback Connector) Provered Brushless Motor Unpowered Brushless Motor/Feedback 134 Powered Brushless Motor/Feedback 135 Pinout Analog Input Connector [-EB1] Analog Input Pins (Aux I/O Connector) Analog Output Pins (Aux I/O Connector) Analog Output Pins (Aux I/O Connector) Auxiliary I/O Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector) Brake Output Pins (Feedb	Mounting Orientation	21		
Operation 24 Position Feedback in the Diagnostic Display 41 Output Voltage specifications 18-19 Position Synchronized Output (Aux I/O Connector) 61 Overview 15 Position Synchronized Output (PSO) Interface [-EB1] 85 Positive Motor Direction 33 Positive Motor Direction 33 Power Amplifier Bandwidth specifications 18-19 Power Requirements 20 Power Requirements 20 Power Requirements 20 Power Requirements 20 Primary Encoder Input (Feedback Connector) 36 Primary Encoder Input (Feedback Connector) 36 Powered Brushless Motor 33 Unpowered Brushless Motor/Feedback 34 Pinout Analog Input Connector [-EB1] 88 Analog Input Pins (Aux I/O Connector) 69 Analog Output Connector [-EB1] 87 Analog Output Pins (Aux I/O Connector) 68 Auxiliary I/O Connector Auxiliary I/O Connector 69 Brake Output Connector Feedback Connector) 70 Brake Output Pins (Feedback Connector) 70 Brake Output Pins (Feedback Connector) 70 Brake Output Pins (Feedback Connector) 88 PSO Specifications (Aux I/O Connector) 61 PSO Poscifications (Aux I/O Connector) 61 PSO Specifications (Aux I/O Connector) 63 PSO Specifications (Aux I/O Connector) 64 PSO Specifications (Aux I/O Connector) 65 PSO Specifications (Aux I/O Connector) 65 PSO Specifications (Aux I/O Connector) 65 PSO Specifi	-			
Operation 24 Position Feedback in the Diagnostic Display 41 Output Voltage specifications 18-19 Position Synchronized Output (Aux I/O Connector) 61 Overview 15 Position Synchronized Output (PSO) Interface [-EB1] 85 Positive Motor Direction 33 Power Amplifier Bandwidth specifications 18-19 Power Requirements 20 Power Requirements 20 Preventative Maintenance 96 Primary Encoder Input (Feedback Connector) 36 Primary Encoder Input (Feedback Connector) 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 36 Provered Brushless Motor 33 Unpowered Brushless Motor/Feedback 34 Pinout Analog Input Connector [-EB1] 88 Analog Input Connector [-EB1] 87 Analog Output Pins (Aux I/O Connector) 69 Analog Output Pins (Aux I/O Connector) 68 Auxiliary I/O Connector 55 Auxiliary I/O Pins (Aux I/O Connector) 56 Brake Output Pins (Feedback Connector) 70 Brake Output Pins (Feedback Connector) 48 PSO Specifications (Aux I/O Connector) 69 Brake Output Pins (Feedback Connector) 70 Brake Output Pins (Feedback Connector) 48 PSO Specifications (Aux I/O Connector) 67 PSO Specific	0			
Output Voltage specifications 18-19 Position Synchronized Output (Aux I/O Connector) Overview 15 Position Synchronized Output (PSO) Interface [-EB1] 85 Positive Motor Direction 33 Positive Motor Direction 33 Positive Motor Direction 33 Power Amplifier Bandwidth specifications 18-19 Power Requirements 20 Preventative Maintenance 90 Primary Encoder Input (Feedback Connector) 91 Primary Encoder Input (Feedback Connector) 92 Primary Encoder Input Pins on the Feedback Connector) 93 Protective Features 94 Protective Features 95 Protective Features 18-19 Protecti	Operation	2.4		
Overview 15 Position Synchronized Output (PSO) Interface [-EB1] 89 Positive Motor Direction 33 Positive Motor Direction 33 Power Amplifier Bandwidth specifications 18-19 Power Requirements 20 Preventative Maintenance 96 Preventative Maintenance 96 Preventative Maintenance 96 Primary Encoder Input (Feedback Connector) 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback	•			
Positive Motor Direction 33 Positive Motor Direction 33 Power Amplifier Bandwidth specifications 18-19 Power Requirements 20 Preventative Maintenance 96 Primary Encoder Input (Feedback Connector) 36 Primary Encoder Input (Feedback Connector) 36 Primary Encoder Input Pins on the Feedback Connector 36 Provered Brushless Motor 33 Unpowered Brushless Motor/Feedback 34 Pinout Analog Input Connector [-EB1] 88 Analog Input Pins (Aux I/O Connector) 69 Analog Output Connector [-EB1] 87 Analog Output Pins (Aux I/O Connector) 68 Auxiliary I/O Connector 55 Auxiliary I/O Pins (Aux I/O Connector) 56 Brake Output Pins (Feedback Connector) 48 Power Requirements 20 Preventative Maintenance 96 Primary Encoder Input (Feedback Connector) 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 36 Protective Features 18-19 Protective Featur				
packing list 27 Power Amplifier Bandwidth specifications 18-19 Power Requirements 26 Preventative Maintenance 96 Primary Encoder Input (Feedback Connector) 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 36 Protective Features 18-19 Protective Featur	Overview	15		
packing list 27 Power Requirements 20 Preventative Maintenance 96 Preventative Maintenance 96 Primary Encoder Input (Feedback Connector) 36 Phasing Pnowered Brushless Motor 33 Isolated Output Sinks Current Schematic 97 Isolated Output Sources Current Schematic 97 Primary Encoder Input Pins (Aux I/O Connector) 67 Procective Features 18-15 Proceedings Input Pins (Aux I/O Connector) 68 Analog Output Pins (Aux I/O Connector) 68 Auxiliary I/O Connector Auxiliary I/O Pins (Aux I/O Connector) 70 Brake Output Pins (Feedback Connector) 48 Proventative Maintenance 96 Proventative Maintenance 96 Primary Encoder Input (Feedback Connector) 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 36 Primary Encoder Input Pins on the Feedback Connector 36 Proceediates Primary Encoder Input Pins on the Feedback Connector 36 Proceediates Pro				
Preventative Maintenance Primary Encoder Input (Feedback Connector) Primary Encoder Input Pins on the Feedback Connector PSO Protective Features PSO Isolated Output Sinks Current Schematic Isolated Output Sources Current Schematic PSO (Aux I/O Connector) PSO (Aux I/O Connector) PSO (Aux I/O Connector) PSO Connector [-EB1] Mating Connector Part Numbers PSO Interface Connector Pinout [-EB1] PSO Output Sources PSO Pins (Aux I/O Connector) PSO Specifications (Aux I/O Connector)	P			
Pc Configuration and Operation Information Peak Output Current specifications Phasing End of Travel Limits Powered Brushless Motor Unpowered Brushless Motor/Feedback Pinout Analog Input Connector [-EB1] Analog Output Pins (Aux I/O Connector) Analog Output Pins (Aux I/O Connector) Analog Output Pins (Aux I/O Connector) Auxiliary I/O Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) Primary Encoder Input (Feedback Connector) Protective Features Protective Features Protective Features Protective Features Protective Features Protective Features Pso Isolated Output Sinks Current Schematic Isolated Output Sources Current Schematic Pso (Aux I/O Connector) Pso (Aux I/O Connector) Pso (Aux I/O Connector) Pso Interface (Aux I/O Connector) Pso Output Sources Pso Pins (Aux I/O Connector) Pso Specifications (Aux I/O Connector)	packing list	27		
Phasing End of Travel Limits Powered Brushless Motor Unpowered Brushless Motor/Feedback Pinout Analog Input Connector [-EB1] Analog Output Connector [-EB1] Analog Output Connector [-EB1] Analog Output Pins (Aux I/O Connector) Auxiliary I/O Connector Brake Output Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) Primary Encoder Input Pins on the Feedback Connector Protective Features Protective Features 18-19 PSO Isolated Output Sources Current Schematic 90 PSO (Aux I/O Connector) PSO (Aux I/O Connector) PSO Interface (Aux I/O Connector) PSO Interface Connector Pinout [-EB1] PSO Output Sources PSO Pins (Aux I/O Connector) PSO Specifications (FER1)	PC Configuration and Operation Information	77		
Phasing End of Travel Limits Powered Brushless Motor Unpowered Brushless Motor/Feedback Unpowered Brushless Motor/Feedback Pinout Analog Input Connector [-EB1] Analog Output Pins (Aux I/O Connector) Analog Output Pins (Aux I/O Connector) Auxiliary I/O Connector Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) Protective Features PSO PSO	Peak Output Current specifications	18-19		
Powered Brushless Motor Unpowered Brushless Motor/Feedback Pinout Analog Input Connector [-EB1] Analog Output Pins (Aux I/O Connector) Auxiliary I/O Connector Auxiliary I/O Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) PSO Associated Output Sinks Current Schematic 90 Isolated Output Sources 90	Phasing			
Powered Brushless Motor Unpowered Brushless Motor/Feedback Pinout Analog Input Connector [-EB1] Analog Input Pins (Aux I/O Connector) Analog Output Connector [-EB1] Analog Output Pins (Aux I/O Connector) Auxiliary I/O Connector Brake Output Pins (Feedback Connector) Auxiliary I/O Connector Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) Auxiliary I/O Connector Brake Output Pins (Feedback Connector)	End of Travel Limits	47		18-15
Pinout Analog Input Connector [-EB1] Analog Output Pins (Aux I/O Connector) Auxiliary I/O Connector Brake Output Connector Brake Output Pins (Feedback Connector) Auxiliary I/O Connector Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) Auxiliary I/O Connector Brake Output Pins (Feedback Connector) Auxiliary Pins (Feedback Connector) Brake Output Pins (Feedback Connector)	Powered Brushless Motor	33		0.0
Analog Input Connector [-EB1] Analog Input Pins (Aux I/O Connector) Analog Output Connector [-EB1] Analog Output Connector [-EB1] Analog Output Pins (Aux I/O Connector) Analog Output Pins (Aux I/O Connector) Auxiliary I/O Connector Auxiliary I/O Pins (Aux I/O Connector) Brake Output Connector Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) Analog Output Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector) Analog Output Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector) Analog Output Pins (Feedback Connector) Analog Output Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector) Analog Output Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector) Analog Output Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector)	Unpowered Brushless Motor/Feedback	34	•	
Analog Input Connector [-EB1] Analog Output Pins (Aux I/O Connector) Analog Output Connector [-EB1] Analog Output Pins (Aux I/O Connector) Auxiliary I/O Connector Brake Output Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) Analog Output Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector) Analog Output Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector) Analog Output Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector) Analog Output Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) Analog Output Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector)	Pinout		·	
Analog Output Connector [-EB1] Analog Output Pins (Aux I/O Connector) Analog Output Pins (Aux I/O Connector) Analog Output Pins (Aux I/O Connector) Auxiliary I/O Connector Auxiliary I/O Pins (Aux I/O Connector) Brake Output Connector Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) Analog Output Pins (Aux I/O Connector) 89 PSO Connector [-EB1] Mating Connector Part Numbers PSO Interface (Aux I/O Connector) PSO Interface Connector Pinout [-EB1] PSO Output Sources PSO Pins (Aux I/O Connector) PSO Specifications (Aux I/O Connector) PSO Specifications [-EB1]	Analog Input Connector [-EB1]	88	•	
Analog Output Connector [-EBT] Analog Output Pins (Aux I/O Connector) Auxiliary I/O Connector Auxiliary I/O Pins (Aux I/O Connector) Brake Output Connector Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) Analog Output Pins (Aux I/O Connector) 55 PSO Interface (Aux I/O Connector) PSO Output Sources PSO Pins (Aux I/O Connector) PSO Specifications (Aux I/O Connector) PSO Specifications [-EB1]	Analog Input Pins (Aux I/O Connector)	69		
Analog Output Pins (Aux I/O Connector) Auxiliary I/O Connector Auxiliary I/O Pins (Aux I/O Connector) Brake Output Connector Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) Auxiliary I/O Pins (Aux I/O Connector) Brake Output Pins (Feedback Connector) PSO Interface (Aux I/O Connector) PSO Output Sources PSO Pins (Aux I/O Connector) PSO Specifications (Aux I/O Connector) PSO Specifications (FEB1)	Analog Output Connector [-EB1]	87		
Auxiliary I/O Connector Auxiliary I/O Pins (Aux I/O Connector) Brake Output Connector Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) PSO Interface Connector Pinout [-EB1] PSO Output Sources PSO Pins (Aux I/O Connector) PSO Specifications (Aux I/O Connector) PSO Specifications [-EB1] PSO Specifications [-EB1]	Analog Output Pins (Aux I/O Connector)	68		
Auxiliary I/O Pins (Aux I/O Connector) Brake Output Connector Brake Output Pins (Feedback Connector) PSO Output Sources PSO Pins (Aux I/O Connector) PSO Specifications (Aux I/O Connector) PSO Specifications (FeB1)		55		89
Brake Output Connector Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) 48 PSO Pins (Aux I/O Connector) PSO Specifications (Aux I/O Connector) 67 PSO Specifications (FeB1)	-		•	
Brake Output Pins (Feedback Connector) Brake Output Pins (Feedback Connector) 48 PSO Specifications (-FB11 89				
PSO Specifications (-FR1)		48		
			PSO Specifications [-EB1]	89

R		RS-422 Encoder (Feedback Connector)	37,57
Resolute absolute encoder	38,58	Sine Wave Encoder (Auxiliary I/O Connector)	59
Revision History	101	Sine Wave Encoder (Feedback Connector)	39
RS-422 Encoder Specifications (Feedback Connector)	37,57	Square Wave Encoder (Feedback Connector)	37,57
RS-422 Line Driver Encoder	37,57	STO Electrical Specifications	50
13 422 Line Driver Encoder	37,37	Unit Weight	21
S		Square Wave Encoder	37,57
Safe Torque Off Input (STO)	49	Square Wave Encoder Inputs Schematic (Aux I/O Connector)	57
Safety Procedures and Warnings	11	Square Wave Encoder Schematic (Feedback Connector	
serial data stream	38,58	Square Wave Encoder Specifications (Feedback) 3/
serial number	27	Connector)	37,57
Shunt Connection Information	72	Standard Features	16
Shunt Connector	72	STO	49
Mating Connector Part Numbers	72	Connector Pinout	49
Pinout	72	Diagnostics	54
Shunt Options	72	Electrical Specifications	50
Sine Wave Encoder (Feedback Connector)	39,59	External Delay Timer	52
Sine Wave Encoder Phasing Reference Diagram	39,59	Functional Description	52
Sine Wave Encoder Schematic (Auxiliary I/O Connecto		Mating Connector Part Numbers	49
Sine Wave Encoder Schematic (Feedback Connector)	40	Motor Function Relative to the STO Input State	53
Sine Wave Encoder Specifications (Auxiliary I/O		Signal Delay	53
Connector)	59	Standards	51
Sine Wave Encoder Specifications (Feedback Connector	or) 39	Standards Data	51
Specifications		Startup Validation Testing	53
Analog Encoder (Auxiliary I/O Connector)	59	Timing	54
Analog Encoder (Feedback Connector)	39	Typical Configuration	50
Analog Input 0 (Aux I/O Connector)	69	Sync-Related Commands	75
Analog Output 0 (Aux I/O Connector)	68	Sync Port Cables	75
Analog Outputs [-EB1]	87	Sync Ports	75
Brake Control Relay	48	System part number	27
Control Board Fuses	97	System Power Requirements	20
Control Supply Connector Wiring	28		
Differential Analog Inputs [-EB1]	88	Т	
Digital Inputs (Aux I/O Connector)	66	Table of Contents	3
Digital Inputs [-EB1]	84	Thermistor Input (Feedback Connector)	43
Digital Outputs (Aux I/O Connector)	63	Thermistor Input Pin on the Feedback Connector	43
Digital Outputs [-EB1]	80	Thermistor Input Schematic	43
High-Speed Inputs	67	Travel Limit Input (Feedback Connector)	45
Internal Shunt	72	TTL Outputs Schematic (PSO)	90
Motor Supply Connector Fuse	29	Two Axis Joystick Interface	92
Motor Supply Connector Wiring	29	Two Axis Joystick Interface (to the I/O board of two drive	es) 93
PSO (Aux I/O Connector)	61	Typical STO Configuration	50
PSO [-EB1]	89	- · · · · · · · · · · · · · · · · · · ·	

Unit Weight	21
Unpacking the Chassis	27
Use	24
W	
Warranty and Field Service	
Wire Colors for Aerotech-Supplied Brushless Motor Cables	

This page intentionally left blank.