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T
he internal model principle
of control theory states 
that algorithms designed 

to perfectly reject input signals 
must contain a model of that in-
put.

Feedback control that ad-
heres to this internal model 
principle has led to the devel-

opment of harmonic cancellation 
algorithms and even more complex 

repetitive controllers.
How are they useful?
Periodic disturbances are commonplace 

in precision motion control applications; any 
oscillatory or rotational motion generates 
some periodic error in both the active and 
ancillary motion axes. Harmonic cancella-
tion algorithms, when properly applied, give 
control system engineers an additional tool 
that is both effective and easily analyzed with 
common frequency domain techniques — to 
eliminate tracking errors in precision motion 
systems. They apply when either the servo 
command or disturbance is largely periodic 
— for example, in machine tools, data storage 
systems, and sensor testing.

Because controls that adhere to the internal 
model principle contain models of system in-
put, harmonic cancellation algorithms contain 
periodic signal generators. When combined 
with a well-tuned conventional controller, 
these algorithms become useful tools for servo 
system designers.

Internal model principle
The internal model principle of control 

theory is a deceptively simple yet powerful 
concept. First formalized in the mid-1970s, it 

The internal model principle is a 

30-years-young idea that serves as 

the basis for a myriad of modern 

motion control approaches. One 

such algorithm — harmonic 

cancellation — is indispensable 

to industry for eliminating tracking 

errors.
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requires that an algorithm contain 
a generator (or model) of any in-
put signal that is to be tracked with 
identically zero steady-state error.

Fig. 1 illustrates the concept with 
a block diagram. For zero error be-
tween the commanded reference 
and measured signals, the control 
algorithm must be capable of self-
generating this signal in the absence 
of any further input.

The most familiar application of 
the internal model principle is the 
use of an integrator I term in com-
mon PID controllers.

Consider the case of a linear-
motor-driven positioning stage 
modeled as a free mass with a con-
trol force applied to it: Proportional 
and derivative control alone are suf-
fi cient to stabilize the system, but 
any constant disturbance force (due 
to the process, gravity, cables, and 
so on) requires some error between 
the reference and measured posi-

tions for the spring-like propor-
tional control term to generate an 
output.

A constant disturbance is mod-
eled as a step input with a Laplace 
transform of 1/s. Adding this term, 

an integrator, to the control algo-
rithm allows output to grow to a 
constant value as required to cancel 
the disturbance and achieve zero 
steady-state error.

Though the internal model prin-

The internal model principle requires that the controller contain a 
model of the input signals to generate the appropriate output in the 
absence of any steady-state forcing error.

A delay element in the feedback 
loop of a continuous-time control 

algorithm satisfi es the internal 
model principle for periodic 

inputs, but effectively contains 
a high (theoretically infi nite) 

number of oscillators to replicate 
an arbitrary periodic input.

Requirement: Internal models

Delay element for periodic inputs

 Opposite: A two-axis (azimuth 
+ roll) positioner is one of a 

myriad of designs that employs 
harmonic cancellation. This 

particular positioner uses these 
algorithms, plus precision 
mechanics and low-noise 

electronics, to minimize tracking 
errors from the motion simulators 

into which it is integrated.
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ciple is very general, specifi c expres-
sions of it are frequently used in pre-

cision motion control applications. 
Any input (whether a command 

trajectory or a disturbance) that re-
peats with some known regularity 
can be addressed with a controller 
that contains a periodic signal gen-
erator. (We’ll discuss these repeti-
tive controllers shortly.) If inputs 
are frequency-limited, they can be 
represented as a summation of sinu-
soids; then they are addressed with 
harmonic cancellation algorithms 
that apply the internal model prin-
ciple with a series of oscillators in 
the control algorithm.

Repetitive controllers
The presence of a periodic sig-

nal generator in the feedback con-
trol algorithm satisfi es the internal 
model principle and allows for per-
fect tracking of periodic commands 
and perfect rejection of periodic 
disturbances. Called repetitive con-
trol, these algorithms were fi rst 
defi ned in the early 1980s, and the 
internal model principle was the ba-
sis for this “controller for repetitive 
operation.”

Originally, developers used a 
controller with a delay element in 
the feedback loop to form a peri-
odic signal generator. However, in 
the continuous-time domain, the 
time delay element corresponded to 
a controller with an infi nite number 
of marginally stable poles. (See Fig. 
2.)

A signal with arbitrarily sharp 
transitions in the time domain re-
quires a high-bandwidth signal 
generator capable of creating this 
high-frequency content. Stabiliz-
ing these systems is challenging, 
because high-frequency controller 
poles tend to interact with unmod-
eled or variable dynamics in the ser-
vomechanism’s mechanical struc-
ture — causing instability.

A similar analysis for repetitive 
control algorithms in the discrete 
time domain exhibits the same 

Dynamic control

The harmonic cancellation algorithm C(s) is implemented in a 
plug-in architecture. This leaves the PID controller unchanged and 
allows ready enabling and disabling of the harmonic cancellation 
algorithms.

Single-frequency harmonic cancellation term

Bode plots show very high (infi nite) magnitude at the oscillator 
frequency.
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each frequency contained within 
the disturbance signal.

Notice the harmonic cancellation 
algorithm’s effect in the frequency 
domain by looking at the case of 
a single-frequency disturbance. 
Each individual oscillator in the 
algorithm has a continuous-time 
Laplace transform representation:

Fig. 4 shows a frequency response 
plot of the harmonic cancellation 
algorithm as the gain term sweeps 
from zero (disabling the oscillator) 
to higher values. Note: The mag-
nitude is infi nite at the oscillator fre-

problem.
Classic Fourier-series analyses 

clarify the relationship between the 
repeating sequence in the time do-
main and pole locations in the fre-
quency domain. Any periodic signal 
can be equally well represented as 
a summation of simple oscillating 
functions — namely, sinusoids.

In short, repetitive controllers 
(when applied to linear systems) 
can be viewed as a series of single-
frequency oscillators added to the 
control algorithm to cancel an in-
put that is itself a summation of single-
frequency sinusoids.

This interpretation is valuable, 
because it allows use of the familiar 
Bode diagram for determining sta-
bility margins and the steady-state 
response of these systems.

Harmonic cancellation
Consider the special case of re-

petitive control applied to a limited 
number of discrete frequencies as 
harmonic cancellation. These cases 
are common in precision motion 
control applications and include:

• Force and torque ripple
• Unbalanced payloads on rotary axes
• Cyclic command profi les
• Screw lead and gear pitch
• Link-style cable carrier systems

Notice that some disturbances 
can be periodic in time, while oth-
ers are periodic on displacement — 
so the specifi c frequency can vary.

Let us assume that we have a sys-
tem under constant speed operation 
with a known frequency.

Implementing harmonic can-
cellation algorithms in a “plug-in” 
style allows it to be easily enabled 
and disabled as required. (The rep-
resentative block diagram in Fig. 3 
includes the harmonic cancellation 
algorithm, standard PID controller, 

and the plant.) In keeping with the 
internal model principle, the har-
monic cancellation algorithm con-
tains parallel oscillators — one for 

Open-loop Bode plot of linear stage

Loop gain increases sharply at the cancellation frequencies of 10 and 
20 Hz. Even so, they have minimal infl uence on the response near the 
55-Hz crossover frequency.

Some manufacturers design 
and build precision motion control 
systems, including the mechanics, 
drives, and control algorithms. Re-
petitive controls are useful enough 
for some of these manufacturers to 
include the tool as standard. The 
challenge is not in the algorithms 
themselves — as 30 years of tech-
nical publications provide support 
here — but in packaging useful fea-
tures into an interface accessible to 
someone without extraordinary lev-
els of training.

Manufacturer challenge
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Dynamic control

quency.
Now, recall how the familiar in-

tegrator term provides zero steady-
state error to constant disturbances. 
In short, we can simply interpret the 
harmonic cancellation block as an 
integrator at a non-zero frequency.

The tracking error due to dis-
turbances is identically zero at the 
oscillator frequency. We can see 

this by referring back to the block 
diagram of Fig. 4, and calculating 
that the tracking error due to a dis-
turbance becomes:

Evaluating this expression at the 

oscillator frequency:

At the frequency of interest, there 
is zero steady-state error to distur-
bances. When the goal is to track 
a periodic profi le, a similar analy-
sis shows unity response with zero 
phase shift between the command-
ed and actual position profi les.

In summary, an oscillator in the 
control algorithm acts as an “inte-
grator” term to signals at the par-
ticular oscillator frequency. Apply-
ing multiple oscillators in parallel 
allows cancellation of more complex 
waveforms, and approaches the gen-
eral case of full-scale repetitive con-
trollers. These are implemented as 
“plug-in” controllers that leave stan-
dard PID control gains unchanged.

We use familiar frequency-do-
main tuning tools to determine sta-
bility margins (crossover frequency, 
phase margin, and gain margin) 
when applying harmonic cancella-

Harmonic cancellation algorithms applied to a horizontally mounted 
rotary stage reduces the root mean square tracking error by 
approximately 19x at 60 rpm. The dominant errors in the case plotted 
here were the payload unbalance and torque variations at the motor 
pole period.

Motion Simulator software imports and 
generates motion profi ling, and allows I/O 
monitoring and control (above) — plus has a 
frequency-response mode (left) for detailed 
motion evaluation.

Harmonic cancellation (HC) reduces stage's error

Software for frequency-response evaluation
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tion algorithms.
Generally however, due to the 

very limited frequency range over 
which the harmonic cancellation 
algorithm is most active, these sys-
tems are straightforward to tune as 
long as the correction frequency is 
well below the system crossover fre-
quency.

Fig. 5 shows an actual open-loop 
frequency response of a system with 
an active harmonic cancellation al-
gorithm active. Dominant peaks 
in the loop gain below the system 
crossover frequency are prominent; 
however, their effect is suffi ciently 
localized — so that gain and phase 
at the crossover frequency are rela-
tively unaffected.

Application examples
Once understood, the overall 

concepts of the internal model prin-

ciple, repetitive control, and har-
monic cancellation are broadly ap-
plicable.

Example : Consider the con-
trol of a disk drive’s read-write arm. 
These disks do not spin on a per-
fectly true axis, but repetitive con-
trol applied to the synchronous por-
tion of the error motion improves 
the ability of the head to track the 
motion.

Example : Fast tool servo-
mechanisms used in asymmetric 
turning operations benefi t from 
repetitive control as well. When 
turning the surface of a toric shape 
(such as the mold for a contact lens 
that corrects for astigmatism), the 
cutting tool essentially returns the 
same point with each revolution of 
the spindle. This periodic toolpath 
can be decomposed into its Fourier 
series coeffi cients with harmonic 

cancellation oscillators applied to 
each of these.

Example : One straightfor-
ward application is a system with a 
horizontally mounted rotary stage. 
From such a machine in one specifi c 
case, a designer needed improved 
velocity stability. One unbalance 
per revolution and nine motor pole 
pitches per revolution were domi-
nant terms. (See Fig. 6, which shows 
position error measured while the 
stage rotates at 60 rpm.) Applying 
harmonic cancellation algorithms 
at these frequencies reduces the root 
mean square tracking error from 33 
to 1.7 arc-sec — a 19× reduction.

For a complete list of this article’s ref-
erences, call (412) 963-7470. For more 

information, visit aerotech.com.
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